O coração de um mamífero voador

características únicas e compartilhadas da anatomia cardíaca do morcego frugívoro Artibeus lituratus

Autores

  • Júlia Guimarães Mendes Alves Mestre em Zoologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brasil.
  • Mariella Bontempo Freitas Departamento de Biologia Animal, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brasil.
  • Jader S Cruz Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brasil.
  • Adriano Paglia Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brasil.

DOI:

https://doi.org/10.32673/bjm.vi91.46

Palavras-chave:

Anatomia do coração, Anatomia funcional, Morcegos, Quirópteros, Stenodermatinae

Resumo

A capacidade do voo verdadeiro e a grande diversidade da ordem Chiroptera podem levantar questões sobre a morfologia e funcionalidade do coração dos morcegos. Aqui objetivamos descrever aspectos anatômicos do coração do grande morcego das frutas, Artibeus lituratus (Phyllostomidae, Stenodermatinae) e suas características funcionais. Vinte e cinco indivíduos tiveram seus corações dissecados e descritos. Descobrimos que o coração de A. lituratus compartilha aspectos gerais tanto do coração de mamíferos quanto os característicos dos quirópteros, como a veia cava anterior bilateral, o cone pulmonar volumoso, o seio das veias cavas desenvolvido, a válvula da veia cava posterior e os músculos papilares ligados à parede septal do ventrículo direito. Algumas características parecem específicas da espécie, como as estruturas membranosas anômalas encontradas no ventrículo direito de alguns indivíduos, nunca antes vistas em outros mamíferos, e também a presença da válvula Thebesiana. Algumas das características encontradas podem estar relacionadas a adaptações ao voo, como um conjunto desenvolvido de ligamentos pericardiais. Este conjunto complexo de ligamentos nunca foi descrito antes para outro mamífero, esses provavelmente atuam mantendo o coração em posição e enquanto o morcego descansa de cabeça para baixo. Os ligamentos pericardiais apresentam infiltrações de gordura branca, que juntamente com os depósitos presentes na superfície do coração, possivelmente atuam como reservas de energia para o músculo cardíaco. Neste trabalho, sugerimos que a presença de duas veias cavas anteriores tem a função de otimizar o fluxo sanguíneo que retorna ao coração.

Referências

Alcock NH. 1898. On the vascular system of the Chiroptera. Proceedings of the Zoological Society of London banner, 58-79. http://dx.doi.org/10.1111/j.1096-3642.1898.tb03130.x.

Alijani B, Ghassemi F. 2016. Anatomy and histology of the heart in Egyptian fruit bat (Rossetus aegyptiacus). Journal of Entomology and Zoology Studies 5: 50-56.

Amoroso EC, Barclay AE, Franklin KJ, Prichard MM. 1942. Incidence of bilateral anterior venae cavae in a series of Eutherian Fœtuses. Proceedings of the Zoological Society of London B1131-(2): 43–53. http://dx.doi.org/10.1111/j.1469-7998.1943.tb00063.x.

Armour JA, Pace JB, Randall W. 1970. Interrelationship of architecture and function of the right ventricle. American Journal of Physiology-Legacy Content 218(1): 174–179. http://dx.doi.org/10.1152/ajplegacy.1970.218.1.17.

Barnett CH, Harrison RJ, Tomlinson JD. 1958. Variations in the venous systems of mammals. Biological Reviews 33(4): 442–487. http://dx.doi.org/10.1111/j.1469-185x.1958.tb01411.x.

Bettex DA, Prêtre R, Chassot PG. 2014. Is our heart a well-designed pump? The heart along animal evolution. European Heart Journal 35(34): 2322-2332. http://dx.doi.org/10.1093/eurheartj/ehu222.

Canals M, Atala C, Grossi B, Iriarte-Díaz J. 2005. Relative size of hearts and lungs of small bats. Acta Chiropterologica 7: 65–72. https://doi.org/10.3161/1733-5329(2005)7[65:RSOHAL]2.0.CO;2.

Canals M, Iriarte-Diaz J, Grossi B. 2011. Biomechanical, respiratory and cardiovascular adaptations of bats and the case of the small community of bats in Chile. Biomechanics in Applications. V. Klika, IntechOpen: 299-322. https://doi.org/10.5772/23599.

Carpenter R. 1985. Flight physiology of flying foxes, Pteropus poliocephalus. Journal of Experimental Biology 114: 619-647. https://doi.org/10.1242/jeb.114.1.619.

Clark AJ. 1927. Comparative physiology of the heart. Cambridge University Press, Cambridge.

CONCEA - Conselho Nacional de Controle de Experimentação Animal. 2015. Diretriz da Prática de Eutanásia do CONCEA. CONCEA, Ministério da Ciência, Tecnologia e Inovação, Brasília. 54 p.

Dongaonkar RM, Quick CM, Vo JC, Meisner JK, Laine GA, Davis MJ, Stewart RH. 2012. Blood flow augmentation by intrinsic venular contraction in vivo. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 302(12): R1436-1442. https://doi.org/10.1152/ajpregu.00635.2011.

Fenton MB, Simmons NB. 2014. Bats: a world of science and mystery. The University of Chicago Press, Chicago. https://doi.org/10.7208/chicago/9780226065267.001.0001

Gupta B. 1966. Morphology of the heart in bats. Mammalia 30: 498—506. https://doi.org/10.1515/mamm.1966.30.3.498.

Hillman SS, Withers PC, Hedrick MS, Kimmel PB. 1985. The effects of erythrocythemia on blood viscosity, maximal systemic oxygen transport capacity and maximal rates of oxygen consumption in an amphibian. Journal of Comparative Physiology B 155: 577–581. https://doi.org/10.1007/BF00694447.

Hyde IH. 1891. Notes on the hearts of certain mammals. The American Naturalist 25(298): 861-863. https://doi.org/10.1086/275415.

Jürgens KD, Bartels H, Bartels R. 1981. Blood oxygen transport and organ weights of small bats and small non-flying mammals. Respiration Physiology 45(3): 243–260. https://doi.org/10.1016/0034-5687(81)90009-8.

Kalko EK, Handley VC, Handley D. 1996. Organization, diversity and long-term dynamics of a neotropical bat community. Pp. 503–553, In: Cody ML, Smallwood JA (Eds.), Long-term studies of vertebrate communities. Academic Press (Elsevier), Cambridge.

Maina JN. 2000. What it takes to fly: The structural and functional respiratory refinements in birds and bats. Journal of Experimental Biology 203(20): 3045-3064.

Marchington JM, Mattacks CA, Pond CM. 1989. Adipose tissue in the mammalian heart and pericardium: Structure, foetal development and biochemical properties. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry (942): 225–232. https://doi.org/10.1016/0305-0491(89)90337-4.

Michaëlsson M, Ho SY. 2000. Congenital heart malformations in mammals: An illustrated text. Imperial College, River Edge. https://doi.org/10.1142/p136.

Moorman AF, Christoffels, VM. 2003. Cardiac chamber formation: development, genes, and evolution. Physiological Reviews 83(4): 1223-1267. https://doi.org/10.1152/physrev.00006.2003

Navaratnam V. 1980. Anatomy of the mammalian heart. Hearts and heart-like organs, Volume 1: Comparative anatomy and development. G. Bourne, Academic Press (Elsevier), Cambridge.

O'Mara MT, Wikelski M, Voigt CC, Ter Maat A, Pollock HS, Burness G, Desantis LM, Dechmann DK. 2017. Cyclic bouts of extreme bradycardia counteract the high metabolism of frugivorous bats. Elife 6: 1-20. https://doi.org/10.7554/eLife.26686.

Park H. 1954. The heart and its vessels in some new world bats. Transactions of the Kansas Academy of Science 57: 197-199. https://doi.org/10.2307/3626020.

Reis NR, Fregonezi MN, Peracchi AL, Shibatta OA. 2013. Morcegos do Brasil: guia de campo. Technical Books Editora, Rio de Janeiro.

Rowlatt U. 1967. Functional anatomy of the heart of the fruit-eating bat, Eidolon helvum, Kerr. Journal of Morphology 123(3): 213-230. https://doi.org/10.1002/jmor.1051230303.

Rowlatt U. 1968. Functional morphology of the heart in mammals. American Zoologist 8(2): 221-229. https://doi.org/10.1093/icb/8.2.221.

Rowlatt U. 1980. Functional and nonfunctional determinants of mammalian cardiac anatomy, Parts I and II. Pp. 259-300, In: Anderson RH (Ed.), Hearts and heart-like organs, Volume 1: Comparative Anatomy. Academic Press (Elsevier), Cambridge.

Rowlatt U. 1990. Comparative anatomy of the heart of mammals. Zoological Journal of the Linnean Society 98: 73-110. https://doi.org/10.1111/j.1096-3642.1990.tb01220.x.

Secomb TW. 2016. Hemodynamics. Comprehensive Physiology: 975–1003. https://doi.org/10.1002/cphy.c150038.

Sisson S, Grossman JD, Getty R. 1975. Sisson and Grossman's the anatomy of the domestic animals. 5th ed. Saunders, Philadelphia.

Stephenson A, Adams JW, Vaccarezza M. 2017. The vertebrate heart: an evolutionary perspective. Journal of Anatomy 231: 787-797. https://doi.org/10.1111/joa.12687.

Thomas SP. 1975. Metabolism during flight in two species of bats, Phyllostomus hastatus and Pteropus gouldii. Journal of Experimental Biology 63: 273-293.

Thomas SP, Suthers RA. 1972. The physiology and energetics of bat flight. Journal of Experimental Biology 57: 317-335. https://doi.org/10.1242/jeb.57.2.317.

Truex RC, Copenhaver WM. 1947. Histology of the moderator band in man and other mammals with special reference to the conduction system. American Journal of Anatomy 80(2): 173–201. https://doi.org/10.1002/aja.1000800203.

Truex RC, Warshaw LJ. 1942. The incidence and size of the moderator band in man and in mammals. The Anatomical Record 82(3): 361-372. https://doi.org/10.1002/ar.1090820309.

Downloads

Publicado

2022-07-06

Como Citar

Alves, J. G. M., Freitas, M. B., Cruz, J. S., & Paglia, A. (2022). O coração de um mamífero voador: características únicas e compartilhadas da anatomia cardíaca do morcego frugívoro Artibeus lituratus. Brazilian Journal of Mammalogy, (91), e91202246. https://doi.org/10.32673/bjm.vi91.46