Técnicas para o estudo da musculatura em pequenos mamíferos

dissecção clássica e cálculo da área de secção transversal fisiológica (PCSA)

Autores

  • Juann Aryell Francisco de Holanda Abreu Laboratório de Mastozoologia, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brasil
  • Gabby Neves Guilhon Laboratório de Mastozoologia, Departamento de Zoologia, Universidade Federal de Pernambuco (UFPR), Recife, PE, Brasil
  • Diego Astúa Laboratório de Mastozoologia, Departamento de Zoologia, Universidade Federal de Pernambuco (UFPR), Recife, PE, Brasil

DOI:

https://doi.org/10.32673/bjm.vie92.111

Palavras-chave:

Anatomia, Dissecção, Miologia, Morfologia, Musculatura

Resumo

A dissecção possibilita o conhecimento de características anatômicas e funcionais dos diferentes grupamentos musculares, e constitui uma das técnicas clássicas que permitem entender a forma e função dos mamíferos. A adição de novas técnicas à dissecção fornece mais informações em que funções podem ser estimadas. Os locais de origem e inserção, os tamanhos e arquitetura interna (da fibra) dos músculos podem corresponder ao desempenho de comportamentos, especialmente quando diferentes ou especializados. A capacidade dos músculos de se estender, de produzir força, ou quão rápido se contraem, está associada à arquitetura de fibra. As fibras musculares estão organizadas nos fascículos e o arranjamento dos fascículos dentro do músculo influencia seu comprimento e a quantidade. Quanto maior o número de fibras no músculo, maior a sua capacidade de produção de força. A área de secção transversal fisiológica (PCSA, sigla baseada no termo em inglês) é uma medida proporcional à força muscular pois representa a quantidade de fibras. Nosso objetivo aqui, é apresentar métodos acessíveis associados a dissecção muscular clássica para medição dos fascículos musculares e estimativa da PCSA. Com isso e a possibilidade de amostragens amplas em coleções e museus científicos, ou mesmo na recepção de novos espécimes que podem representar oportunidades únicas, esperamos aumentar o interesse em explorar os músculos através de uma combinação de estimativas que contribuem para a compreensão da evolução morfológica e funcional da musculatura dos mamíferos.

Biografia do Autor

Diego Astúa, Laboratório de Mastozoologia, Departamento de Zoologia, Universidade Federal de Pernambuco (UFPR), Recife, PE, Brasil

http://www.ufpe.br/mastozoologia.

https://orcid.org/0000-0002-9573-6437.

Referências

Abdala F, Flores DA, Giannini NP. 2001. Postweaning ontogeny of the skull of Didelphis Albiventris. Journal of Mammalogy 82: 190-200. DOI: http://doi.org/10.1644/1545-1542(2001)082%3C0190:POOTSO%3E2.0.CO;2.

Aerts P, D’Août K, Herrel A, Van Damme R. 2002. Introduction. Pp. 1-4, In: Aerts P, D’Août k, Herrel A, Van Damme R (Eds.), Topics in functional and ecological vertebrate morphology. Shaker Publishing, Maastricht.

Anapol F, Barry K. 1996. Fiber architecture of the extensors of the hindlimb in semiterrestrial and arboreal guenons. American Journal of Physical Anthropology 99: 429-447. DOI: http://doi.org/10.1002/(SICI)1096-8644(199603)99:3<429::AID-AJPA5>3.0.CO;2-R.

Anapol F, Shahnoor N, Ross CF. 2008. Scaling of reduced physiologic cross-sectional area in primate muscles of mastication. Pp. 201-216, In: Vinyard C, Ravosa MJ, Wall C (Eds.), Primate craniofacial function and biology. Springer, Boston. DOI: http://doi.org/10.1007/978-0-387-76585-3_10.

Auricchio P, Salomão MG. 2002. Técnicas de coleta e preparação de vertebrados. Instituto Pau Brasil de História Natural, São Paulo. DOI: http://doi.org/10.13140/RG.2.1.2882.2807.

Becerra F, Echeverría AI, Casinos A, Vassallo AI. 2014. Another one bites the dust: Bite force and ecology in three caviomorph rodents (Rodentia, Hystricognathi). Journal of Experimental Zoology 321: 220-232. DOI: http://doi.org/10.1002/jez.1853.

Bels V, Herrel A. 2019. Feeding, a tool to understand vertebrate evolution introduction to “feeding in vertebrates”. Pp. 1-18, In: Bels V, Whishaw I (Eds.), Feeding in vertebrates: Evolution, morphology, behavior, biomechanics. Springer, Cham. DOI: http://doi.org/10.1007/978-3-030-13739-7_1.

Böhmer C, Theil J-C, Fabre A-C, Herrel A. 2020. Atlas of terrestrial mammal limbs. CRC Press, Boca Raton. DOI: http://doi.org/10.1201/b22115.

Brassard C, Merlin M, Guintard C, Monchâtre-Leroy E, Barrat J, Bausmayer N, Bausmayer S, Bausmayer A et al. 2020. Bite force and its relationship to jaw shape in domestic dogs. Journal of Experimental Biology 223. DOI: http://doi.org/10.1242/jeb.224352.

Brassard C, Merlin M, Monchâtre-Leroy E, Guintard C, Barrat J, Garès H, Larralle A, Triquet R et al. 2021. Masticatory system integration in a commensal canid: interrelationships between bones, muscles, and bite force in the red fox. Journal of Experimental Biology 224: jeb224394. DOI: http://doi.org/10.1242/jeb.224394.

Chazeau C, Marchal J, Hackert R, Perret M, Herrel A. 2013. Proximate determinants of bite force capacity in the mouse lemur. Journal of Zoology 290: 42-48. DOI: http://doi.org/10.1111/jzo.12011.

Cleuren J, Aerts P, De Vree F. 1995. Bite and joint force analysis in Caiman crocodilus. Belgian Journal of Zoology 125: 79-94.

Close RI. 1972. Dynamic properties of mammalian skeletal muscles. Physiological Reviews 52: 129-197. DOI: http://doi.org/10.1152/physrev.1972.52.1.129.

Cox PG, Morris PJR, Hennekam JJ, Kitchener AC. 2020. Morphological and functional variation between isolated populations of British red squirrels (Sciurus vulgaris). Journal of Zoology 312: 271-283. DOI: http://doi.org/10.1111/jzo.12829.

Crook TC, Cruickshank SE, McGowan CM, Stubbs N, Wakeling JM, Wilson AM, Payne RC. 2008. Comparative anatomy and muscle architecture of selected hind limb muscles in the Quarter Horse and Arab. Journal of Anatomy 212: 144-152. DOI: http://doi.org/10.1111/j.1469-7580.2007.00848.x.

Davis DD. 1955. Masticatory apparatus in the spectacled bear, Tremarctos ornatus. Chicago Natural History Museum, Fieldiana, Zoology, Chicago. DOI: http://doi.org/10.5962/bhl.title.2809.

Davis DD. 1964. The giant panda: a morphological study of evolutionary mechanisms. Chicago Natural History Museum, Fieldiana, Zoology Memoirs, Chicago. DOI: http://doi.org/10.5962/bhl.title.5133.

Deutsch AR, Dickinson E, Leonard KC, Pastor F, Muchlinski MN, Hartstone-Rose A. 2020. Scaling of anatomically derived maximal bite force in primates. Anatomical Record 303: 2026-2035. DOI: http://doi.org/10.1002/ar.24284.

Dickinson E, Basham C, Rana A, Hartstone-Rose A. 2019. Visualization and quantification of digitally dissected muscle fascicles in the masticatory muscles of Callithrix jacchus using nondestructive DiceCT. Anatomical Record 302: 1891-1900. DOI: http://doi.org/10.1002/ar.24212.

Dickinson E, Davis JS, Deutsch AR, Patel D, Nijhawan A, Patel M, Blume A, Gannon JL et al. 2021. Evaluating bony predictors of bite force across the order Carnivora. Journal of Morphology 282: 1499-1513. DOI: http://doi.org/10.1002/jmor.21400.

Dickinson E, Hartstone‐Rose A. 2023. Behavioral correlates of fascicular organization: The confluence of muscle architectural anatomy and function. Anatomical Record: 1-13. DOI: http://doi.org/10.1002/ar.25187.

Dickinson E, Stark H, Kupczik K. 2018. Non-Destructive determination of muscle architectural variables through the use of DiceCT. Anatomical Record 301: 363-377. DOI: http://doi.org/10.1002/ar.23716.

Diogo R. 2017. Evolution driven by organismal behavior. Springer International Publishing, Cham. DOI: http://doi.org/10.1007/978-3-319-47581-3.

Diogo R, Bello‐Hellegouarch G, Kohlsdorf T, Esteve‐Altava B, Molnar JL. 2016. Comparative myology and evolution of marsupials and other vertebrates, with notes on complexity, bauplan, and “scala naturae.” The Anatomical Record 299: 1224-1255. DOI: http://doi.org/10.1002/ar.23390.

Douglass JK, Wcislo WT. 2010. An inexpensive and portable microvolumeter for rapid evaluation of biological samples. BioTechniques 49: 566-572. DOI: http://doi.org/10.2144/000113464.

Druzinsky RE, Doherty AH, De Vree FL. 2011. Mammalian masticatory muscles: Homology, nomenclature, and diversification. Integrative and Comparative Biology 51(2): 224-234. DOI: http://doi.org/10.1093/icb/icr067.

Ellis JL, Thomason JJ, Kebreab E, France J. 2008. Calibration of estimated biting forces in domestic canids: Comparison of post-mortem and in vivo measurements. Journal of Anatomy 212: 769-780. DOI: http://doi.org/10.1111/j.1469-7580.2008.00911.x.

Fabre P-H, Herrel A, Fitriana Y, Meslin L, Hautier L. 2017. Masticatory muscle architecture in a water-rat from Australasia (Murinae, Hydromys) and its implication for the evolution of carnivory in rodents. Journal of Anatomy 231: 380-397. DOI: http://doi.org/10.1111/joa.12639.

Fahn-Lai P, Biewener AA, Pierce SE. 2020. Broad similarities in shoulder muscle architecture and organization across two amniotes: Implications for reconstructing non-mammalian synapsids. PeerJ 8: e8556. DOI: http://doi.org/10.7717/peerj.8556.

Fisher RE, Adrian B, Elrod C, Hicks M. 2008. The phylogeny of the red panda (Ailurus fulgens): Evidence from the hindlimb. Journal of Anatomy 213: 607-628. DOI: http://doi.org/10.1111/j.1469-7580.2008.00987.x.

Ford KL, Albert JS, Summers AP, Hedrick BP, Schachner ER, Jones AS, Evans K, Chakrabarty P. 2023. A new era of morphological investigations: Reviewing methods for comparative anatomical studies. Integrative Organismal Biology 5: obad008. DOI: http://doi.org/10.1093/iob/obad008.

Garland TJr, Losos JB. 1994. Ecological morphology of locomotor performance in squamate reptiles. Pp. 240-302, In: Wainwright PC, Reilly SM (Eds.), Ecological morphology: Integrative organismal biology. University of Chicago Press, Chicago.

Ginot S, Herrel A, Claude J, Hautier L. 2018. Skull size and biomechanics are good estimators of in vivo bite force in murid rodents. Anatomical Record 301: 256-266. DOI: http://doi.org/10.1002/ar.23711.

Greaves WS. 2012. The mammalian jaw: a mechanical analysis. Cambridge University Press, Cambridge.

Hartstone-Rose A, Deutsch AR, Leischner CL, Pastor F. 2018. Dietary correlates of primate masticatory muscle fiber architecture. The Anatomical Record 301: 311-324. DOI: http://doi.org/10.1002/ar.23715.

Hartstone‐Rose A, Dickinson E. 2022. Functional correlates of lemur masticatory muscle fiber architecture visualized in 3D using DiceCT. The FASEB Journal 36. DOI: http://doi.org/10.1096/fasebj.2022.36.S1.R5290.

Hartstone-Rose A, Dickinson E, Deutsch AR, Worden N, Hirschkorn GA. 2022. Masticatory muscle architectural correlates of dietary diversity in Canidae, Ursidae, and across the order Carnivora. The Anatomical Record 305: 477-497. DOI: http://doi.org/10.1002/ar.24748.

Hartstone-Rose A, Hertzig I, Dickinson E. 2019. Bite force and masticatory muscle architecture adaptations in the dietarily diverse Musteloidea (Carnivora). The Anatomical Record 302: 2287-2299. DOI: http://doi.org/10.1002/ar.24233.

Hartstone-Rose A, Perry JMG, Morrow CJ. 2012. Bite force estimation and the fiber architecture of felid masticatory muscles. The Anatomical Record 295: 1336-1351. DOI: http://doi.org/10.1002/ar.22518.

Herrel A, Aerts P, De Vree F. 1998. Static biting in lizards: Functional morphology of the temporal ligaments. Journal of Zoology 244: 135-143. DOI: http://doi.org/10.1111/j.1469-7998.1998.tb00015.x.

Herrel A, De Smet A, Aguirre LF, Aerts P. 2008. Morphological and mechanical determinants of bite force in bats: Do muscles matter? Journal of Experimental Biology 211: 86-91. DOI: http://doi.org/10.1242/jeb.012211.

Herring SW. 1972. The role of canine morphology in the evolutionary divergence of pigs and peccaries. Journal of Mammalogy 53: 500-512. DOI: http://doi.org/10.2307/1379040.

Herring SW. 1993. Functional morphology of mammalian mastication. American Zoologist 33: 289-299. DOI: http://doi.org/10.1093/icb/33.3.289.

Herring SW, Herring SE. 1974. The superficial masseter and gape in mammals. The American Naturalist 108: 561-576. DOI: http://doi.org/10.1086/282934.

Herzog W. 1994. Muscle. Pp. 154-187, In: Nigg BM, Herzog W (Eds.), Biomechanics of the Musculoskeletal System. John Wiley, Chichester.

Huxley HE. 1972. Molecular basis of contraction in cross-striated muscles. Pp. 301-387, In: Bourne GH (Ed.), The structure and function of muscle. Academic Press, New York.

De Iuliis G, Pulerà D. 2019. The dissection of vertebrates. Elsevier/Academic Press.

Kikuchi Y, Kuraoka A. 2014. Differences in muscle dimensional parameters between non-formalin-fixed (freeze-thawed) and formalin-fixed specimen in gorilla (Gorilla Gorilla). Mammal Study 39: 65-72. DOI: http://doi.org/10.3106/041.039.0101.

Kiltie RA. 1982. Bite force as a basis for niche differentiation between rain forest peccaries (Tayassu tajacu and T. pecari). Biotropica 14: 188-195. DOI: http://doi.org/10.2307/2388025.

Kiltie RA. 1984. Size ratios among sympatric neotropical cats. Oecologia 61: 411-416. DOI: http://doi.org/10.1007/BF00379644.

Langenbach GEJ, Weijs WA. 1990. Growth patterns of the rabbit masticatory muscles. Journal of Dental Research 69: 20-25. DOI: http://doi.org/10.1177/00220345900690010201.

Leischner CL, Crouch M, Allen KL, Marchi D, Pastor F, Hartstone-Rose A. 2018. Scaling of primate forearm muscle architecture as it relates to locomotion and posture. Anatomical Record 301: 484-495. DOI: http://doi.org/10.1002/ar.23747.

Leonard KC, Worden N, Boettcher ML, Dickinson E, Hartstone-Rose A. 2022a. Effects of freezing and short-term fixation on muscle mass, volume, and density. Anatomical Record 305: 199-208. DOI: http://doi.org/10.1002/ar.24639.

Leonard KC, Worden N, Boettcher ML, Dickinson E, Hartstone-Rose A. 2022b. Effects of long-term ethanol storage on muscle architecture. Anatomical Record 305: 184-198. DOI: http://doi.org/10.1002/ar.24638.

Leonard KC, Worden N, Boettcher ML, Dickinson E, Omstead KM, Burrows AM, Hartstone-Rose A. 2021. Anatomical and ontogenetic influences on muscle density. Scientific Reports 11: 2114. DOI: http://doi.org/10.1038/s41598-021-81489-w.

Mandarim-de-Lacerda CA. 2019. Ontogenetic and phylogenetic allometry (bivariate and multivariate) for young morphologists. International Journal of Morphology 37: 466-472. DOI: http://doi.org/10.4067/S0717-95022019000200466.

Marchi D, Leischner CL, Pastor F, Hartstone-Rose A. 2018. Leg muscle architecture in primates and its correlation with locomotion patterns. Anatomical Record 301: 515-527. DOI: http://doi.org/10.1002/ar.23745.

Marroig G, Shirai LT, Porto A, Oliveira FB, de Conto V. 2009. The evolution of modularity in the mammalian skull II: Evolutionary consequences. Evolutionary Biology 36: 136-148. DOI: http://doi.org/10.1007/s11692-009-9051-1.

Martin ML, Travouillon KJ, Fleming PA, Warburton NM. 2020. Review of the methods used for calculating physiological cross-sectional area (PCSA) for ecological questions. Journal of Morphology 281: 778-789. DOI: http://doi.org/10.1002/jmor.21139.

Martin ML, Warburton NM, Travouillon KJ, Fleming PA. 2019. Mechanical similarity across ontogeny of digging muscles in an Australian marsupial (Isoodon fusciventer). Journal of Morphology 280: 423-435. DOI: http://doi.org/10.1002/jmor.20954.

Mendez J, Keys A. 1960. Density and composition of mammalian muscle. Metabolism 9: 184-188.

Missagia R V, Patterson BD, Krentzel D, Perini FA. 2021. Insectivory leads to functional convergence in a group of Neotropical rodents. Journal of Evolutionary Biology 34: 391-402. DOI: http://doi.org/https://doi.org/10.1111/jeb.13748.

Morales MM, Moyano SR, Ortiz AM, Ercoli MD, Aguado LI, Cardozo SA, Giannini NP. 2018. Comparative myology of the ankle of Leopardus wiedii and L. geoffroyi (Carnivora: Felidae): functional consistency with osteology, locomotor habits and hunting in captivity. Zoology 126: 46-57. DOI: http://doi.org/10.1016/j.zool.2017.12.004.

Murphy R, Beardsley A. 1974. Mechanical properties of the cat soleus muscle in situ. American Journal of Physiology-Legacy Content 227: 1008-1013. DOI: http://doi.org/10.1152/ajplegacy.1974.227.5.1008.

Oishi M, Ogihara N, Endo H, Asari M. 2008. Muscle architecture of the upper limb in the orangutan. Primates 49: 204-209. DOI: http://doi.org/10.1007/s10329-008-0082-5.

Parmenter MD, Nelson JP, Weigel SE, Gray MM, Payseur BA, Vinyard CJ. 2020. Masticatory Apparatus Performance and Functional Morphology in the Extremely Large Mice from Gough Island. Anatomical Record 303: 167-179. DOI: http://doi.org/10.1002/ar.24053.

Penrose F, Cox P, Kemp G, Jeffery N. 2020. Functional morphology of the jaw adductor muscles in the Canidae. The Anatomical Record 303: 2878-2903. DOI: http://doi.org/10.1002/ar.24391.

Perry JMG, Prufrock KA. 2018. Muscle functional morphology in Paleobiology: The past, present, and future of “Paleomyology.” Anatomical Record 301: 538-555. DOI: http://doi.org/10.1002/ar.23772.

Perry JMG, St Clair EM, Hartstone-Rose A. 2015. Craniomandibular signals of diet in adapids. American Journal of Physical Anthropology 158: 646-662. DOI: http://doi.org/10.1002/ajpa.22811.

Perry JMG, Wall CE. 2008. Scaling of the chewing muscles in prosimians. Pp. 217-240, In: Vinyard CJ, Ravosa MJ, Wall CE (Eds.), Primate craniofacial function and biology. Springer, New York.

Rasband, WS. 1997-2018. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. Disponível em: https://imagej.nih.gov/ij/. Acessado em: 08 de outubro de 2023.

Ravosa MJ, Ning J, Costley DB, Daniel AN, Stock SR, Stack MS. 2010. Masticatory biomechanics and masseter fiber-type plasticity. Journal of Musculoskeletal & Neuronal Interactions 10: 46-55.

Rayfield EJ. 2019. What does musculoskeletal mechanics tell us about evolution of form and function in vertebrates? Pp. 45-70, In: Bels V, Whishaw I (Eds.), Feeding in vertebrates: Evolution, morphology, behavior, biomechanics. Springer, Cham. DOI: http://doi.org/10.1007/978-3-030-13739-7_3.

Rayne J, Crawford GNC. 1972. The relationship between fibre length, muscle excursion and jaw movements in the rat. Archives of Oral Biology 17: 859-872. DOI: http://doi.org/10.1016/0003-9969(72)90029-5.

Santana SE. 2018. Comparative anatomy of bat jaw musculature via Diffusible Iodine-Based Contrast-Enhanced Computed Tomography. Anatomical Record 301: 267-278. DOI: http://doi.org/10.1002/ar.23721.

Santana SE, Dumont ER, Davis JL. 2010. Mechanics of bite force production and its relationship to diet in bats. Functional Ecology 24: 776-784. DOI: http://doi.org/10.1111/j.1365-2435.2010.01703.x.

Schwenk K. 2000. Tetrapod feeding in the context of vertebrate morphology. Pp. 3-20, In: Schwenk K (Ed.), Feeding. Elsevier. DOI: http://doi.org/10.1016/B978-012632590-4/50002-2.

Shahar R, Milgram J. 2001. Morphometric and anatomic study of the hind limb of a dog. American Journal of Veterinary Research 62: 928-933. DOI: http://doi.org/10.2460/ajvr.2001.62.928.

Shirai LT, Marroig G. 2010. Skull modularity in neotropical marsupials and monkeys: Size variation and evolutionary constraint and flexibility. Journal of Experimental Zoology 314 B: 663-683. DOI: http://doi.org/10.1002/jez.b.21367.

Sicuro FL, Oliveira LFB, Hendges CD, Fonseca C. 2021. Quantifying bite force in coexisting tayassuids and feral suids: a comparison between morphometric functional proxies and in vivo measurements. PeerJ 9: e11948. DOI: http://doi.org/10.7717/peerj.11948.

Silva JM, Carne L, John Measey G, Herrel A, Tolley KA. 2016. The relationship between cranial morphology, bite performance, diet, and habitat in a radiation of dwarf chameleon (Bradypodion). Biological Journal of the Linnean Society 119: 52-67. DOI: http://doi.org/10.1111/bij.12819.

Sinclair AG, Alexander RM. 1987. Estimates of forces exerted by the jaw muscles of some reptiles. Journal of Zoology 213: 107-115. DOI: http://doi.org/10.1111/j.1469-7998.1987.tb03681.x.

Smith KK, Redford KH. 1990. The anatomy and function of the feeding apparatus in two armadillos (Dasypoda): Anatomy is not destiny. Journal of Zoology 222: 27-47. DOI: http://doi.org/10.1111/j.1469-7998.1990.tb04027.x.

Souza Junior P, Santos LMRP, Viotto-Souza W, Carvalho NC, Souza EC, Kasper CB, Abidu-Figueiredo M, Santos ALQ. 2018. Functional myology of the thoracic limb in Pampas fox (Lycalopex gymnocercus): a descriptive and comparative analysis. Journal of Anatomy 233: 783-806. DOI: http://doi.org/10.1111/joa.12892.

Souza Junior P, Souza Pahim AB, Viotto-Souza W, Pellenz J, Bernardes FCS, Abidu-Figueiredo M, Santos ALQ. 2021. Evolutionary history or function? Which preponderates in the expression of the muscle mass of the thoracic limb in wild carnivorans? Anatomical Record 304: 1344-1356. DOI: http://doi.org/10.1002/ar.24593.

Swiderski DL, Zelditch ML. 2010. Morphological diversity despite isometric scaling of lever arms. Evolutionary Biology 37: 1-18. DOI: http://doi.org/10.1007/s11692-010-9081-8.

Taverne M, Fabre A-C, Herbin M, Herrel A, Peigné S, Lacroux C, Lowie A, Pagès F et al. 2018. Convergence in the functional properties of forelimb muscles in carnivorans: adaptations to an arboreal lifestyle? Biological Journal of the Linnean Society 125: 250-263. DOI: http://doi.org/10.1093/biolinnean/bly123.

Taylor AB, Terhune CE, Toler M, Holmes M, Ross CF, Vinyard CJ. 2018. Jaw‐muscle fiber architecture and leverage in the hard‐object feeding sooty mangabey are not structured to facilitate relatively large bite forces compared to other papionins. The Anatomical Record 301: 325-342. DOI: http://doi.org/10.1002/ar.23718.

Taylor AB, Vinyard CJ. 2020. In situ fiber length estimates from sectioned muscle bellies are not systematically shorter compared with fiber length estimates obtained using chemical digestion. The FASEB Journal 34: 1-1. DOI: http://doi.org/10.1096/fasebj.2020.34.s1.02175.

Thomason JJ. 1991. Cranial strength in relation to estimated biting forces in some mammals. Canadian Journal of Zoology 69: 2326-2333. DOI: http://doi.org/10.1139/z91-327.

Turnbull WD. 1970. Mammalian masticatory apparatus. Fieldiana: Geology.

Vickerton P, Jarvis J, Jeffery N. 2013. Concentration-dependent specimen shrinkage in iodine-enhanced microCT. Journal of Anatomy 223: 185-193. DOI: http://doi.org/10.1111/joa.12068.

Vinyard CJ, Taylor AB. 2010. A preliminary analysis of the relationship between jaw-muscle architecture and jaw-muscle electromyography during chewing across primates. Anatomical Record 293: 572-582. DOI: http://doi.org/10.1002/ar.21121.

Warburton NM. 2009. Comparative jaw muscle anatomy in kangaroos, wallabies, and rat-kangaroos (Marsupialia: Macropodoidea). Anatomical Record 292: 875-884. DOI: http://doi.org/10.1002/ar.20905.

Warburton NM, Grégoire L, Jacques S, Flandrin C. 2013. Adaptations for digging in the forelimb muscle anatomy of the southern brown bandicoot (Isoodon obesulus) and bilby (Macrotis lagotis). Australian Journal of Zoology 61: 402-419. DOI: http://doi.org/10.1071/ZO13086.

Warburton NM, Yakovleff M, Malric A. 2012. Anatomical adaptations of the hind limb musculature of tree-kangaroos for arboreal locomotion (Marsupialia: Macropodinae). Australian Journal of Zoology 60: 246-258. DOI: http://doi.org/10.1071/ZO12059.

Ward SR, Lieber RL. 2005. Density and hydration of fresh and fixed human skeletal muscle. Journal of Biomechanics 38: 2317-2320. DOI: http://doi.org/10.1016/j.jbiomech.2004.10.001.

Weijs WA, Hillen B. 1985. Cross-sectional areas and estimated intrinsic strength of the human jaw muscles. Acta Morphologica Neerlando-Scandinavica 23: 267-274.

Downloads

Publicado

2023-10-22

Como Citar

Abreu, J. A. F. de H., Guilhon, G. N., & Astúa, D. (2023). Técnicas para o estudo da musculatura em pequenos mamíferos: dissecção clássica e cálculo da área de secção transversal fisiológica (PCSA). Brazilian Journal of Mammalogy, (e92), e202392111. https://doi.org/10.32673/bjm.vie92.111