Catalog of 3D models of crania and mandibles of genera and species of Brazilian mammals available on the internet

Autores/as

  • Evelyn Brito Laboratório de Mastozoologia, Departamento de Zoologia, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
  • Diego Astúa Laboratório de Mastozoologia, Departamento de Zoologia, Universidade Federal de Pernambuco (UFPE), Recife, Brazil

DOI:

https://doi.org/10.32673/bjm.vie92.125

Palabras clave:

Crania, CT-scan, Mandible, Photogrammetry, 3D-models

Resumen

The use of digital technologies is undoubtedly allowing new approaches in the study of mammal morphology, behavior, and evolution and the availability of 3D models of mammal skulls is increasing regularly. Brazil harbors currently 776 mammal species, but there are no estimates on the coverage of this species diversity as 3D cranial models in repositories worldwide. Our goal here was to survey these repositories and create a list of 3D models of Brazilian mammals with direct links, as a tool for teaching activities and as an auxiliary tool for possible preliminary morphological identification of skeletal remains. We found 3D models for about one-third of all Brazilian mammal species and models for congeneric species for ca. 50% of all other species. The distribution of models found for Brazilian mammals is uneven, with a few orders and families with good coverages but most still poorly sampled or lacking any model altogether. We hope that this initial step ignites a collective effort to cover all the Brazilian mammal fauna.

Biografía del autor/a

Diego Astúa, Laboratório de Mastozoologia, Departamento de Zoologia, Universidade Federal de Pernambuco (UFPE), Recife, Brazil

URL: http://www.ufpe.br/mastozoologia

ORCID: https://orcid.org/0000-0002-9573-6437

Citas

Abreu EF, Casali D, Costa-Araújo R, Garbino GST, Libardi GS, Loretto D, Loss AC, Marmontel M,et al. 2022. Lista de Mamíferos do Brasil (2022-1). [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7469767.

Beckmann S. 2023. Teaching Mammalogy online: lessons learned from the COVID-19 pandemic and their application to the future. Journal of Mammalogy 104(4): 667-674. http://dx.doi.org/10.1093/jmammal/gyad020.

Boyer DM, Gunnell GF, Kaufman S, McGeary TM. 2017. Morphosource: Archiving and Sharing 3-D Digital Specimen Data. The Paleontological Society Papers 22: 157-181. http://dx.doi.org/10.1017/scs.2017.13.

Buser TJ, Boyd OF, Cortes A, Donatelli CM, Kolmann MA, Luparell JL, Pfeiffenberger JA, Sidlauskas BL, Summers AP. 2020. The natural historian's guide to the CT galaxy: Step-by-step instructions for preparing and analyzing computed tomographic (CT) Data using cross-platform, Open Access software. Integrative and Organismal Biology 2(1): obaa009. http://dx.doi.org/10.1093/iob/obaa009.

Chiquito EA, Caccavo A, Santos CF, Semedo TBF, Costa-Pinto AL, Astúa D, Bezerra AMR, Silva CR, et al. 2021. Mammal collections in Brazil: overview and database. Brazilian Journal of Mammalogy e.90: e90202105. http://dx.doi.org/10.32673/bjm.vie90.5.

Clark EG, Jenkins KM, Brodersen CR. 2023. Back to life: Techniques for developing high-quality 3D reconstructions of plants and animals from digitized specimens. PLoS ONE 18(3): e0283027. http://dx.doi.org/10.1371/journal.pone.0283027.

Dickinson E, Tomblin E, Rose M, Tate Z, Gottimukkula M, Granatosky MC, Santana SE, Hartstone-Rose A. 2023. Ecomorphological correlates of inner and middle ear anatomy within phyllostomid bats. The Anatomical Record: 1-14. http://dx.doi.org/10.1002/ar.25178.

Evin A, Souter T, Hulme-Beaman A, Ameen C, Allen R, Viacava P, Larson G, Cucchi T, Dobney K. 2016. The use of close-range photogrammetry in zooarchaeology: Creating accurate 3D models of wolf crania to study dog domestication. Journal of Archaeological Science: Reports 9: 87-93. http://dx.doi.org/10.1016/j.jasrep.2016.06.028.

Falkingham PL. 2012. Acquisition of high-resolution 3D models using free, open-source, photogrammetric software. Palaeontologia Electronica 15(1): 1T:15p. http://dx.doi.org/10.26879/264.

Flaherty EA, Lanier HC, Varner J, Duggan JM, Beckmann S, Yahnke CJ, Erb LP, Patrick LE, et al. 2023. Teaching Mammalogy in the 21st century: Advances in undergraduate education. Journal of Mammalogy. http://dx.doi.org/10.1093/jmammal/gyac121.

Ford KL, Albert JS, Summers AP, Hedrick BP, Schachner ER, Jones AS, Evans K, Chakrabarty P. 2023. A new era of morphological investigations: Reviewing methods for comparative anatomical studies. Integrative and Organismal Biology 5(1): obad008. http://dx.doi.org/10.1093/iob/obad008.

Giacomini G, Scaravelli D, Herrel A, Veneziano A, Russo D, Brown RP, Meloro C. 2019. 3D photogrammetry of bat skulls: perspectives for macro-evolutionary analyses. Evolutionary Biology 46(3): 249-259. http://dx.doi.org/10.1007/s11692-019-09478-6.

Goswami A. 2015. Phenome10K: a free online repository for 3-D scans of biological and palaeontological specimens. Available at: www.phenome10k.org. Accessed on: November 05, 2023.

Hingst-Zaher E, Geise L, Astúa D, Silva JA, Brandão MV. 2021. Contribution to the knowledge about mammal collections in Brazil. Brazilian Journal of Mammalogy e.90. http://dx.doi.org/10.32673/bjm.vie90.96.

Kano Y. 2022. Bio-photogrammetry: Digitally archiving coloured 3D morphology data of creatures and associated challenges. Research Ideas and Outcomes 8. http://dx.doi.org/10.3897/rio.8.e86985.

Mallison H, Wings O. 2014. Photogrammetry in paleontology - a practical guide. Journal of Paleontological Techniques 12: 1-31.

Marcy AE, Fruciano C, Phillips MJ, Mardon K, Weisbecker V. 2018. Low resolution scans can provide a sufficiently accurate, cost- and time-effective alternative to high resolution scans for 3D shape analyses. PeerJ 6: e5032. http://dx.doi.org/10.7717/peerj.5032.

Medina JJ, Maley JM, Sannapareddy S, Medina NN, Gilman CM, McCormack JE. 2020. A rapid and cost-effective pipeline for digitization of museum specimens with 3D photogrammetry. PLoS ONE 15(8): e0236417. http://dx.doi.org/10.1371/journal.pone.0236417.

Munoz MM, Price SA. 2019. The future is bright for evolutionary morphology and biomechanics in the era of Big Data. Integrative and Comparative Biology 59(3): 599-603. http://dx.doi.org/10.1093/icb/icz121.

Pokhrel S, Chhetri R. 2021. A literature review on impact of COVID-19 pandemic on teaching and learning. Higher Education for the Future 8(1): 133-141. http://dx.doi.org/10.1177/2347631120983481.

Rahman IA, Adcock K, Garwood RJ. 2012. Virtual fossils: A new resource for science communication in paleontology. Evolution: Education and Outreach 5(4): 635-641. http://dx.doi.org/10.1007/s12052-012-0458-2.

Sanford GM, Lutterschmidt WI, Hutchison VH. 2002. The comparative method revisited. BioScience 52(9): 830-836. http://dx.doi.org/10.1641/0006-3568(2002)052[0830:TCMR]2.0.CO;2

Sidlauskas BL, Burns MD, Buser TJ, Harper N, Kindred M. 2021. Teaching Ichthyology online with a virtual specimen collection. Ichthyology & Herpetology 109(2). http://dx.doi.org/10.1643/t2020031.

Thomas DB, Hiscox JD, Dixon BJ, Potgieter J. 2016. 3D scanning and printing skeletal tissues for anatomy education. Journal of Anatomy 229(3): 473-481. http://dx.doi.org/10.1111/joa.12484.

Ziegler MJ, Perez VJ, Pirlo J, Narducci RE, Moran SM, Selba MC, Hastings AK, Vargas-Vergara C, et al. 2020. Applications of 3D paleontological data at the Florida Museum of Natural History. Frontiers in Earth Science 8: 600696. http://dx.doi.org/10.3389/feart.2020.600696.

Descargas

Publicado

2023-11-18

Cómo citar

Brito, E. W. de, & Astúa, D. (2023). Catalog of 3D models of crania and mandibles of genera and species of Brazilian mammals available on the internet. Brazilian Journal of Mammalogy, (e92), e922023125. https://doi.org/10.32673/bjm.vie92.125