Comparação entre métodos de captura de pelos para monitoramento populacional de pecarídeos
DOI:
https://doi.org/10.32673/bjm.vie92.101Palavras-chave:
Armadilha de pelos, Dicotyles tacaju, Mata Atlântica, Metodologia, Tayassu pecariResumo
A grande perda da biodiversidade e os declínios populacionais fazem dos mamíferos um dos grupos mais vulneráveis mundialmente. Por isso, é importante monitorar populações, sendo que diversas metodologias vêm sendo desenvolvidas e melhoradas para a coleta de dados de forma indireta, com abordagens não invasivas ou minimamente invasivas. O nosso objetivo foi avaliar a eficiência de dois métodos diferentes para a coleta de pelos, armadilhas para pelos e busca ativa, para queixadas (Tayassu pecari) e caititus (Dicotyles tajacu). Este trabalho foi realizado em duas áreas protegidas na Mata Atlântica do sudeste do Brasil. Entre março e outubro de 2019, foram instaladas e monitoradas 16 armadilhas de pelos em um esforço amostral de 3.000 dias, e a busca ativa foi realizada ao longo de trilhas e estradas de terra, cobrindo um total de 822 quilômetros. Ao comparar os dois métodos, as armadilhas de pelos foram mais eficientes para queixadas, mas a busca ativa foi mais eficiente para caititus. Embora cada método tenha sido mais eficiente para cada espécie de pecarídeo, acreditamos que os dois métodos se complementam. Além disso, recomendamos algumas adaptações para que trabalhos futuros possam ser ainda mais eficientes. Por fim, incentivamos a realização de mais estudos como este para evitar gastos desnecessários de recursos e melhorar a coleta de material biológico de animais de vida livre, principalmente para espécies ameaçadas de extinção.
Referências
Ahumada JA, Silva CEF, Gajapersad K, Hallam C, Hurtado J, Martin E., McWilliam A, Mugerwa B, et al. 2011. Community structure and diversity of tropical forest mammals: Data from a global camera trap network. Philosophical Transactions of the Royal Society B: Biological Sciences 366: 2703-2711. https://doi.org/10.1098/rstb.2011.0115.
Altrichter M, Taber A, Beck H, Reyna-Hurtado R, Lizarraga L, Keuroghlian A, Sanderson E. 2012. Range-wide declines of a key Neotropical ecosystem architect, the Near Threatened white-lipped peccary Tayassu pecari. Oryx 46(1): 87-98. https://doi.org/10.1017/S0030605311000421.
ACUC - American Society of Mammalogists Animal Care and Use Committee. 1998. Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists Animal Care and Use Committee. Journal of Mammalogy: 1416-1431. https://doi.org/10.2307/1383033.
Ando H, Mukai H, Komura T, Dewi T, Ando M, Isagi Y. 2020. Methodological trends and perspectives of animal dietary studies by noninvasive fecal DNA metabarcoding. Environmental DNA 2(4): 391-406. https://doi.org/10.1002/edn3.117.
Angeli T, Oliveira ML, Duarte JMB. 2014. Differentiation of deer species of the genus Mazama by track morphometry. Studies on Neotropical Fauna and Environment. 49(3): 199-203. https://doi.org/10.1080/01650521.2014.958898.
Barja I, Navarro-Castilla Á, Pérez L. 2016. Effectiveness and applications of hair traps for the study of wild mammal populations. Polish Journal of Ecology 64(3): 409-419. https://doi.org/10.3161/15052249PJE2016.64.3.010.
Beck H, Keuroghlian A, Reyna-Hurtado R, Altrichter M, Góngora J. 2017. White-lipped peccary Tayassu pecari (Link, 1795). Pp. 265-276, In: Melletti M & Meijaard E (Eds.), Ecology, Conservation and Management of Wild Pigs and Peccaries. Cambridge University Press. Cambridge, U. K.
Beier LR, Lewis SB, Flynn RW, Pendleton G, Schumacher TW. 2005. A single-catch snare to collect brown bear hair for genetic mark-recapture studies. Wildlife Society Bulletin 33(2):766-773. https://www.jstor.org/stable/3785109.
Beja-Pereira A, Oliveira R, Alves PC, Schwartz MK, Luikart G. 2009. Advancing ecological understandings through technological transformations in noninvasive genetics. Molecular Ecology Resources 9(5): 1279-1301. https://doi.org/10.1111/j.1755-0998.2009.02699.x.
Biondo C, Gonçalves HS, Bernardo C, Galetti M. 2010. Hair trap efficacy to sample white-lipped peccaries (Tayassu pecari). Suiform Soundings 10(1): 24-27.
Bradham J, Jorge MLSP, Pedrosa F, Keuroghlian A, Costa VE, Bercê W, Galetti M. 2019. Spatial isotopic dietary plasticity of a Neotropical Forest ungulate: The white-lipped peccary (Tayassu pecari). Journal of Mammalogy 100(2): 464-474. https://doi.org/10.1093/jmammal/gyz041.
Carroll EL, Bruford MW, DeWoody JA, Leroy G, Strand A, Waits L, Wang J. 2018. Genetic and genomic monitoring with minimally invasive sampling methods. Evolutionary Applications. 11(7): 1094-1119. https://doi.org/10.1111/eva.12600.
Castro-Arellano I, Madrid-Luna C, Lacher Jr. TE, Leon-Paniagua L. 2008. Hair-trap efficacy for detecting mammalian carnivores in the Tropics. Journal of Wildlife Management 72(6): 1405-1412. https://doi.org/10.2193/2007-476.
Ceballos G, Ehrlich PR, Dirzo R. 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. PNAS 114 (30): E6089-E6096. https://doi.org/10.1073/pnas.1704949114.
Chiarello AG. 1999a. Density and population size of mammals in remnants of Brazilian Atlantic Forest. Conservation Biology 14(6): 1649-1657. Available at: https://www.jstor.org/stable/2641516. Accessed on: June 07, 2023.
Chiarello AG. 1999b. Effects of fragmentation of the Atlantic Forest on mammal communities in South-Eastern Brazil. Biological Conservation 89(1): 71-82. https://doi.org/10.1016/S0006-3207(98)00130-X.
Cook JA, Light JE. 2019. The emerging role of mammal collections in 21st century mammalogy. Journal of Mammalogy 100(3): 733-750. https://doi.org/10.1093/jmammal/gyy148.
Davoli F, Schmidt K, Kowalczyk R, Randi E. 2013. Hair-snaring and molecular genetic identification for reconstructing the spatial structure of Eurasian lynx populations. Mammalian Biology 78: 118-126. https://doi:10.1016/j.mambio.2012.06.003.
Desbiez ALJ, Keuroghlian A, Beisiegel BM, Medici EP, Gatti A, Pontes ARM, Campos CB, Tófoli CF, et al. 2012. Avaliação do risco de extinção do cateto Pecari tajacu Linnaeus, 1758, no Brasil. Biodiversidade Brasileira 1: 74-83.
Downey PJ, Hellgren EC, Caso A, Carvajal S, Frangioso K. 2007. Hair snares for noninvasive sampling of felids in North America: Do Gray foxes affect success? Journal of Wildlife Management 71(6): 2090-2094. https://doi.org/10.2193/2006-500.
Ebert C, Huckschlag D, Schulz HK, Hohmann U. 2010. Can hair traps sample wild boar (Sus scrofa) randomly for the purpose of non-invasive population estimation? European Journal of Wildlife Research. 56:583-590. https://doi.org/10.1007/s10344-009-0351-7.
Fragoso JMV. 2004. A long-term study of white-lipped peccary (Tayassu pecari) population fluctuations in northern Amazonia - anthropogenic versus “natural” causes. Pp. 286-296, In: Silvius KM, Bodmer RE, Fragoso JMV (Eds.), People in nature: wildlife conservation in South and Central America. Columbia University Press, New York, USA.
Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter S, Chapin FS, Coe MT, et al. 2005. Global consequences of land use. science 309 (5734): 570-574. https://doi.org/10.1126/science.111177.
Garrett NR, Watkins J, Simmons NB, Fenton B, Maeda-Obregon A, Sanchez DE, Froehlich EM, Walker FM, et al. 2023. Airborne eDNA documents a diverse and ecologically complex tropical bat and other mammal community. Environmental DNA 5: 350-362. https://doi.org/10.1002/edn3.385.
Haulton SM, Porter WF, Rudolph BA. 2001. Evaluating 4 methods to capture white-tailed deer. Wildlife Society Bulletin 29(1):255-264. Available at: https://www.jstor.org/stable/3784006. Accessed on: June 08, 2023.
Heinicke S, Kalan AK, Wagner OJJ, Mundry R, Lukashevich H., Kühl HS. 2015. Assessing the performance of a semi-automated acoustic monitoring system for primates. Methods in Ecology and Evolution 6 (7): 753-763. https://doi.org/10.1111/2041-210X.12384.
Hunt KE, Jooke R, Buck CL, Bérubé M, Rolland RM. 2019. Evaluation of fecal hormones for noninvasive research on reproduction and stress in humpback whales (Megaptera novaeangliae). General and Comparative Endocrinology 280: 24-34. https://doi.org/10.1016/j.ygcen.2019.04.004.
ICMBio - Instituto Chico Mendes de Conservação da Biodiversidade. 2019a. Plano de Manejo Reserva Biológica Córrego do Veado. 241p.
ICMBio - Instituto Chico Mendes de Conservação da Biodiversidade. 2019b. Plano de Manejo Reserva Biológica do Córrego Grande. 241p.
IUCN - The International Union for Conservation of Nature. 2023. IUCN Red List of Threatened Species. Version 2022-2. Available at: www.iucnredlist.org. Accessed May 23, 2023.
Jácomo ATA, Furtado MM, Kashivakura CK, Marinho-Filho J, Sollimann R, Tôrres NM, Silveira L. 2013. White-lipped peccary home-range size in a protected area and farmland in the central Brazilian grassland. Journal of Mammalogy 94 (1): 137-145. https://doi.org/10.1644/11-MAMM-A-411.1.
Judas J, Henry O. 1999. Seasonal variation of home range of collared peccary in tropical rain forests of French Guiana. Journal of Wildlife Management 63(2): 546-552. https://doi.org/10.2307/3802641.
Kaizer MC, Alvim THG, Novaes CL, McDevitt AD, Young RJ. 2022. Snapshot of the Atlantic Forest canopy: Surveying arboreal mammals in a biodiversity hotspot. Oryx 56(6): 825-836. https://doi.org/10.1017/S0030605321001563.
Kays R, Sheppard J, Mclean K, Welch C, Paunescu C, Wang V, Kravit G, Crofoot M. 2019. Hot monkey, cold reality: surveying rainforest canopy mammals using drone-mounted thermal infrared sensors. International Journal of Remote Sensing 40(2): 407-419. https://doi.org/10.1080/01431161.2018.1523580.
Kendall KC, Stetz JB, Boulanger J, Macleod AC, Paetkau D, White GC. 2009. Demography and genetic structure of a recovering grizzly bear population. Journal of Wildlife Management 73(1): 3-17. https://doi.org/10.2193/2008-330.
Keuroghlian A, Eaton DP, Longland WS. 2004. Area use by white-lipped and collared peccaries (Tayassu pecari and Tayassu tajacu) in a tropical forest fragment. Biological Conservation 120 (3): 411-425. https://doi.org/10.1016/j.biocon.2004.03.016.
Keuroghlian A, Desbiez ALJ, Beisiegel BM, Medici EP, Gatti A, Pontes ARMP, Campos CB, Tófoli CF, et al. 2012. Avaliação do risco de extinção do queixada Tayassu pecari Link, 1795, no Brasil. Biodiversidade Brasileira 1(3):84-102.
Kiltie RA, Terborgh J. 1983. Observation on the behavior of Rain Forest peccaries in Peru: Why do White-lipped peccaries form herds? Zeitschrift fur Tierpsychologie 62(3): 241-255. https://doi.org/10.1111/j.1439-0310.1983.tb02154.x.
Kinoshita G, Yonezawa S, Murakami S, Isagi Y. 2019. Environmental dna collected from snow tracks is useful for identification of mammalian species. Zoological Science 36(3):198-207. https://doi.org/10.2108/zs180172.
Leite DA, Keuroghlian A, Rufoc DA, Miyaki CY, Biondo C. 2018. Genetic evidence of promiscuity in a mammal without apparent sexual dimorphism, the white-lipped peccary (Tayassu pecari). Mammalian Biology 92: 111-114. https://doi.org/10.1016/j.mambio.2018.05.005.
Lukacs PM, Brunham KP. 2005. Estimating population size from DNA-Based closed capture-recapture data incorporating genotyping error. The Journal of Wildlife Management 69(1): 396-403. https://www.jstor.org/stable/3803615.
MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83: 2248-2255. https://doi.org/10.1890/0012- 9658(2002)083[2248:ESORWD]2.0.CO;2.
Magioli M, Bovo AAA, Alberici V, Ferraz KMPM. 2018. The use of hair traps as a complementary method in mammal ecology studies. Mammalia 83(2): 144-149. https://doi.org/10.1515/mammalia-2017-0156.
Magioli M, Villar N, Jorge ML, Biondo C, Keuroghlian A, Bradham J, Pedrosa F, Costa V, et al. 2021. Dietary expansion facilitates the persistence of a large frugivore in fragmented tropical forests. Animal Conservation 25 (4): 582-593. https://doi.org/10.1111/acv.12766.
Mann HB, Whitney DR. 1947. On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics 18(1): 50-60. https://www.jstor.org/stable/2236101.
McCoy MB, Vaughan CS, Rodrigues MA, Kitchen D. 1990. Seasonal movement, home range, activity, and diet of collared peccaries (Tayassu tajacu) in Costa Rican dry forest. Vida Silvestre Neotropical 22: 6-20.
Monterroso P, Rich LN, Serronha A, Ferreras P, Alves PA. 2014. Efficiency of hair snares and camera traps to survey mesocarnivore populations. European Journal Wildlife Research 60: 279-289. https://doi.org/10.1007/s10344-013-0780-1.
Moore JF, Pine WE, Mulindahabi F, Niyigaba P, Gatorano G, Masozera MK, Beaudrot L. 2020. Comparison of species richness and detection between line transects, ground camera traps, and arboreal camera traps. Animal Conservation 23: 561-572. https://doi.org/10.1111/acv.12569
Moreira DO, Alibhai SK, Jewell ZC, Cunha CJ, Seibert JB, Gatti A. 2018. Determining the numbers of a landscape architect species (Tapirus terrestris), using footprints. PeerJ 6: e4591. https://doi.org/10.7717/peerj.4591.
Mowat G, Paetkau D. 2002. Estimating marten Martes americana population size using hair capture and genetic tagging. Wildlife Biology 8(3): 201-209. https://doi.org/10.2981/wlb.2002.034.
Nussberger B, Wandeler P, Camenisch G. 2014. A SNP chip to detect introgression in wildcats allows accurate genotyping of single hairs. European Journal of Wildlife Research 60: 405-410. https://doi.org/10.1007/s10344-014-0806-3.
Pauli JN, Hamilton MB, Crain EB, Buskirk SW. 2008. A single-sampling hair trap for mesocarnivores. Journal of Wildlife Management 72(7): 1650-1652. https://doi.org/10.2193/2007-588.
Pérez-Irineo G, Santos-Moreno A. 2016. Abundance, herd size, activity pattern and occupancy of ungulates in Southeastern Mexico. Animal Biology 66(1): 97-109. https://doi.org/10.1163/15707563-00002490.
Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO. 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344 (6187). https://doi.org/10.1126/science.1246752.
Portella TP, Bilski DR, Passos FC, Pie MR. 2013. Assessing the efficacy of hair snares as a method for noninvasive sampling of Neotropical felids. Zoologia 30(1): 49-54. https://doi.org/10.1590/S1984-46702013000100006.
QGIS.org. QGIS Geographic Information System. QGIS Association, Version 3.30. Available at http://www.qgis.org.
Reyna-Hurtado R, Rojas-Flores E, Tanner GW. 2009. Home range and habitat preferences of White-lipped peccaries (Tayassu pecari) in Calakmul, Campeche, Mexico. Journal of Mammalogy 90(5): 1199-1209. https://doi.org/10.1644/08-MAMM-A-246.1.
Reyna-Hurtado R, Chapman CA, Calme S, Pedersen EJ. 2012. Searching in heterogeneous and limiting environments: Foraging strategies of white-lipped peccaries (Tayassu pecari). Journal of Mammalogy 93(1): 124-133. https://doi.org/10.1644/10-MAMM-A-384.1.
Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassbrug BBN, Tabarelli M, Fonseca GA, Mittermeier. 2018. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation 16(4): 208-214. https://doi.org/10.1016/j.pecon.2018.10.002.
R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/. Accessed on: June 08, 2023.
RStudio Team. 2020. RStudio: Integrated development for R. RStudio, PBC, Boston, MA. Available at: http://www.rstudio.com/. Accessed on: June 08, 2023.
Russello MA, Waterhouse MD, Etter PD, Johnson EA. 2015. From promise to practice: Pairing non-invasive sampling with genomics in conservation. PeerJ 3: e1106. https://doi.org/10.7717/peerj.1106.
Sales NG, Kaizer MC, Coscia I, Perkins JC, Highlands A, Boubli JP, Magnusson WE, Silva MNF, Benvenuto C, McDevitt AD. 2020. Assessing the potential of environmental DNA metabarcoding for monitoring Neotropical mammals: A case study in the Amazon and Atlantic Forest, Brazil. Mammal Review 50: 221-225. https://doi.org/10.1111/mam.12183.
Sánchez-Pinzón K, Reyna-Hurtado R, Naranjo EJ, Keuroghlian A. 2020. Peccaries and their relationship with water availability and their predators in Calakmul, México. Therya 11(2): 213-220. https://doi.org/10.12933/therya-20-878.
Sarmento-Soares LM, Martins-Pinheiro RF. 2017. Unidades de Conservação e água: a situação das áreas protegidas de Mata Atlântica do norte do Espírito Santo – sudeste do Brasil. Biodiversidade Brasileira 7(1): 69-87.
Spearman C. 1904. The proof and measurement of association between two things. The American Journal of Psychology 15(1): 72-101. https://doi.org/10.2307/1412159.
Srbek-Araujo AC, Chiarello AG. 2013. Influence of camera-trap sampling design on mammal species capture rates and community structures in southeastern Brazil. Biota Neotropica 13(2): 51-62. https://doi.org/10.1590/S1676-06032013000200005.
Stetz BJ, Seitz T, Sawaya MA. 2015. Effects of exposure on genotyping success rates of hair samples from Brown and American Black Bears. Journal of Fish and Wildlife Management 6 (1): 191-198. https://doi.org/10.3996/122013-JFWM-085.
Sowls, LK. 1997. Javelinas and other peccaries: Their biology, management, and use. Texas A&M University Press, College Station, USA.
Taber AB, Doncaster CP, Neris NN, Colman FH. 1994. Ranging behavior and activity patterns of two sympatric peccaries, Catagonus wagneri and Tayassu tajacu, in the Paraguayan Chaco. Mammalia 58(1): 61-71. https://doi.org/10.1515/mamm.1994.58.1.61.
Taberlet P, Camarra JJ, Griffin S, Uhrès E, Hanotte O, Waits LP, Dubois-Paganon C, Burke T, Bouvet J. 1997. Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Molecular Ecology 6(9): 869-876. https://doi.org/10.1111/j.1365-294X.1997.tb00141.x.
Voss RS, Emmons LH. 1996. Mammalian diversity in neotropical lowland rainforests: A preliminary assessment. Bulletin of the American Museum of Natural History 230: 1-115. Available at: http://hdl.handle.net/2246/1671. Accessed on: June 07, 2023.
Wallace R, Ayala G, Viscarra M. 2012. Lowland tapir (Tapirus terrestris) distribution, activity patterns and relative abundance in the Greater Madidi-Tambopata Landscape. Integrative Zoology 7: 407-419. https://doi.org/10.1111/1749-4877.12010.
Weaver JL, Wood P, Paetkau D, Laack LL. 2005. Use of scented hair snares to detect ocelots. Wildlife Society Bulletin 33(4): 1384-1391. Available at: https://www.jstor.org/stable/3784912. Accessed on: June 08, 2023.
Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes L, et al. 2019. Welcome to the tidyverse. Journal of Open Source Software 4(43): 1686. https://doi.org/10.21105/joss.01686.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Brazilian Journal of Mammalogy
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.