Técnicas e avanços na identificação de cromossomos de mamíferos
DOI:
https://doi.org/10.32673/bjm.vie92.116Palavras-chave:
Bandeamentos cromossômicos, Citogenética, Citotaxonomia, Coloração convencionalResumo
A citogenética, por meio do estudo do cariótipo, com suas características como número diploide (2n), morfologia cromossômica dos autossomos (número fundamental - NF) e sistema sexual, constitui-se em uma importante ferramenta que pode auxiliar no esclarecimento das relações filogenéticas e no status taxonômico de vários táxons, recebendo o nome de citotaxonomia. Além da coloração convencional existem várias técnicas clássicas de bandeamentos cromossômicos, como os bandeamentos GTG, CBG e Ag-RONs, que auxiliam nas comparações entre espécies na busca de homologias e no entendimento da estrutura e composição dos cromossomos. Problemas sistemáticos e taxonômicos, além da estrutura, função e comportamento dos cromossomos foram elucidados em alguns grupos de mamíferos por meio desses bandeamentos. Neste estudo, apresentamos os procedimentos de preparações cromossômicas diretas de medula óssea e de sangue periférico empregados no campo e no laboratório para a obtenção de células mitóticas metafásicas em suspensão. Descrevemos também as principais técnicas de coloração convencional e bandeamentos cromossômicos para análise dos cariótipos de mamíferos.
Referências
Almeida B, Novaes RLM, Aguieiras M, Souza RF, Esbérard CEL, Geise L. 2016. Karyotype of three Lonchophylla species (Chiroptera, Phyllostomidae) from Southeastern Brazil. Comparative Cytogenetics 10(1): 109. DOI: https://doi.org/10.3897/CompCytogen.v10i1.6646.
Araújo NP, Loss AC, Cordeiro-Jr DA, Silva KR, Yuri-Leite LR, Svartman M. 2014. New karyotypes of Atlantic tree rats, genus Phyllomys (Rodentia: Echimyidae). Genome 57(1): 1-8. DOI: https://doi.org/10.1139/gen-2013-0168.
Arslan A, Zima J. 2014. Karyotypes of the mammals of Turkey and neighboring regions: A review. Folia Zoologica 63(1): 1-62. DOI: https://doi.org/10.25225/fozo.v63.i1.a1.2014.
Baker RJ, Bickham JM. 1980. Karyotypic evolution in bats: Evidence of extensive and conservative chromosomal evolution in closely related taxa. Systematic Biology 29(3): 239-53. DOI: https://doi.org/10.1093/sysbio/29.3.239.
Baker RJ, Haiduk M, Robbins LW, Cadena A, Koop B. 1982. Chromosomal studies of South American bats and their systematic implications. Pp. 303-327, In: Mares MA, Genoways HH (Eds.), Mammalian biology in South America. Special Publication Series. Pymatuning Laboratory of Ecology VI.
Baker RJ. 1979. Karyology. Pp. 107-155, In: Baker RJ, Jones JK, Carter DC (Eds.), Biology of bats of the New World family Phyllostomatidae. Part III. Special Publications of the Museum of Texas Tech University, Lubbock.
Bell O, Burton A, Dean C, Gasser SM, Torres-Padilla ME. 2023. Heterochromatin definition and function. Nature Reviews Molecular Cell Biology 1-4. DOI: https://doi.org/10.1038/s41580-023-00599-7
Benazzi M. 1973. Cytotaxonomy and evolution: General remarks. Pp. 3-14, In: Chiarelli AB, Capanna E (Eds.), Cytotaxonomy and vertebrate evolution. Academic Press, New York.
Claussen U. 2005. Chromosomics. Cytogenetic and Genome Research 111: 101-106. DOI: https://doi:10.1159/000086377
Corrêa MMO. 2016. Citotaxonomia de quirópteros na Amazônia brasileira e filogeografia de espécies potenciais hospedeiras de zoonoses. Tese de doutorado em Biodiversidade e Saúde, Programa de Pós-Graduação em Biodiversidade e Saúde, Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, Brasil.
Corrêa MMO, Dias D, Mantilla-Meluk H, Lazar A, Bonvicino CR. 2017. Karyotypic and phylogeographic analyses of Cormura brevirostris (Chiroptera, Emballonuridae). Journal of Mammalogy 98(5): 1330-1339. DOI: https://doi.org/10.1093/jmammal/gyx098.
Deakin JE, Potter S, O’Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MD, Fukui K, Graves JAM et al. 2019. Chromosomics: Bridging the gap between genomes and chromosomes. Gene 10(8): 627. DOI: https://doi:10.3390/genes10080627.
Dobigny G, Ducroz JF, Robinson TJ, Volobouev V. 2004. Cytogenetics and cladistics. Systematic Biology 53(3): 470-484. DOI: https://doi.org/10.1080/10635150490445698.
Fagundes V, Vianna-Morgante AM, Yonenaga-Yassuda Y. 1997. Telomeric sequences localization and G-banding patterns in the identification of a polymorphic chromosomal rearrangement in the rodent Akodon cursor (2n= 14, 15 and 16). Chromosome Research: An International Journal on the Molecular, Supramolecular and Evolutionary Aspects of Chromosome Biology 5(4): 228-32. DOI: https://doi.org/10.1023/a:1018463401887.
Gibson LJ. 1984. Chromosomal chances in mammalian speciation: A literature review. Origins 11(2): 67-89.
Graphodatsky AS, Trifonov VA, Stanyon R. 2011. The genome diversity and karyotype evolution of mammals. Molecular Cytogenetics 4(1): 1-16. DOI: https://doi.org/10.1186/1755-8166-4-22.
Guerra MS. 1988. Introdução à citogenética geral. Editora Guanabara Koogan S.A., Rio de Janeiro.
Guerra M, Souza MD. 2002. Como observar cromossomos: um guia de técnicas em citogenética vegetal, animal e humana. FUNPEC, Ribeirão Preto.
Hood CS, Baker RJ. 1986. G- and C-Banding chromosomal studies of bats of the family Emballonuridae. Journal of Mammalogy 67: 706-11. DOI: https://doi.org/10.2307/1381131.
Howell WT, Black DA. 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: A 1-step method. Experientia 36(8): 1014-1015. DOI: https://doi.org/10.1007/BF01953855.
Kasahara S. 2003. Práticas de citogenética. Série Cadernos SBG, Ribeirão Preto.
Kasahara S. 2009. Introdução à pesquisa em citogenética de vertebrados. Sociedade Brasileira de Genética, Ribeirão Preto.
Kenthao A, Tanomtong A, Supanuam P, Pinyoteppratan C, Muangprom P, Buranarom P, Sanoamuang L. 2012. Standardize karyotype and idiogram of Mehsani Buffaloes, Bubalusbubalis by conventional staining, GTG-Banding, CBG-Banding and AG-NOR Banding techniques. Buffalo Bulletin 31(1): 24-39.
Khongcharoensuk H, Tanomtong A, Patawang I, Supanuam P, Sornnok S, Pinthong K. 2017. Karyotype and idiogram of the axis deer (Axia axis, Cervidae) by conventional staining, GTG, high-resolution GTG-, and Ag-NOR-banding techniques. Cytologia 82(1): 91-98. DOI: https://doi.org/10.1508/cytologia.82.91.
King M. 1994. Species evolution: the role of chromosomes changes. Cambridge University Press, New York.
Makino S. 1948. A study of the chromosomes in two species of bats (Chiroptera). The Biological Bulletin 94(3): 275-82.
Marsano RM, Giordano E, Messina G, Dimitri P. 2019. A new portrait of constitutive heterochromatin: Lessons from Drosophila melanogaster. Trends in Genetics 35(9): 615-631. DOI: https://doi.org/10.1016/j.tig.2019.06.002
Meyne J, Baker RJ, Hobart HH, Hsu TC, Ryder OA, Ward OG, Wiley JE, Wuster-Hill DH et al. 1990. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99: 3-10. DOI: https://doi.org/10.1007/BF01737283.
Meyne J, Ratliff Rl, Moyzis RK. 1989. Conservation of the human telomere sequence (TTAGGG) among vertebrates. Proceedings of the National Academy of Sciences 86(18): 7049-7053.
Morielle E, Varella-Garcia M. 1988. Variability of nucleolous organizer regions in phyllostomid bats. Revista Brasileira de Genética 11(4): 853-71.
Nogusa S. 1960. A comparative study of the chromosomes in fishes with particular considerations on taxonomy and evolution. Memoirs of the Hyogo Prefectural University of Agriculture 3(1): 1-62.
Noronha RCR, Nagamachi CY, Pieczarka JC, Marques-Aguiar S, Assis MDFLD, Barros RMDS. 2004. Meiotic analyses of the sex chromosomes in Carolliinae-Phyllostomidae (Chiroptera): NOR separates the XY1Y2 into two independent parts. Caryologia 57(1): 1-9. DOI: https://doi.org/10.1080/00087114.2004.10589365.
Noronha RCR, Nagamachi CY, Pieczarka JC, Marques-Aguiar S, Barros RMDS. 2001. Sex-autosome translocations: meiotic behavior suggests an inactivation block with permanence of autosomal gene activity in Phyllostomid bats. Caryologia 54(3): 267-277. DOI: https://doi.org/10.1080/00087114.2001.10589235.
Passarge E. 1979. Emil Heitz and the concept of heterochromatin: longitudinal chromosome differentiation was recognized fifty years ago. American Journal of Human Genetics, 31: 106-115. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1685768/pdf/ajhg00194-0014. Accessed on: October 14, 2023.
Patton JC, Baker RJ. 1978. Chromosomal homology and evolution of Phyllostomatoid bats. Systematic Biology 27(4): 449-462. DOI: https://doi.org/10.1093/sysbio/27.4.449.
Rodrigues LRR, Barros RM, Marques-Aguiar S, Assis MDFL, Pieczarka JC, Nagamachi CY. 2003. Comparative cytogenetics of two phyllostomids bats. A new hypothesis to the origin of the rearranged X chromosome from Artibeus lituratus (Chiroptera, Phyllostomidae). Caryologia 56(4): 413-419. DOI: https://doi.org/10.1080/00087114.2003.10589352.
Saitoh Y, Laemmli UK. 1994. Metaphase chromosome structure: Bands arise from a differential folding path of the highly AT-rich scaffold. Cell 76(4): 609-22. DOI: https://doi.org/10.1016/0092-8674(94)90502-9.
Seabright M. 1971. A rapid banding technique for human chromosomes. The Lancet 298(7731): 971-972. DOI: https://doi.org/10.1016/S0140-6736(71)90287-X.
Sessions SK. 1990. Chromosomes: molecular cytogenetics. Pp. 156-203, In: Hillis DM, Moritz C (Eds.), Molecular Systematics. Sinauer Associates, Sunderland, MA.
Schmid M, Guttenbach M. 1988. Evolutionary diversity of reverse (R) fluorescent chromosome bands in vertebrates. Chromosoma 97(2): 101-114. DOI: https://doi.org/10.1007/BF00327367
Shaffer LG, Tommerup N. 2005. ISCN 2005: An international system for human cytogenetics nomenclature. Karger. Published in collaboration with Cytogenetics and Cell Genetics.
Sites JW, Bickham JW, Haiduk MW. 1981. Conservative chromosomal change in the bat family Mormoopidae. Canadian Journal of Genetics and Cytology 23(3): 459-67. DOI: https://doi.org/10.1139/g81-050.
Sola L, Cataudella S, Capanna E. 1981. New developments in vertebrate cytotaxonomy. III Karyology of bony fishes: a review. Genetica 54: 288-328. DOI: https://doi.org/10.1007/BF00135048.
Stock AD. 1975. Chromosome banding pattern homology and its phylogenetic implications in the bat genera Carollia and Choeroniscus. Cytogenetics and Cell Genetics 14(1): 34-41. DOI: https://doi.org/10.1159/000130317.
Stoll C. 2013. Molecular cytogenetic evolution of mammals. European Journal of Human Genetics 21: 1330. DOI: https://doi.org/10.1038/ejhg.2013.4.
Sumner AT. 1982. The nature and mechanisms of chromosome banding. Cancer Genetics and Cytogenetics 6(1): 59-87. DOI: https://doi.org/10.1016/0165-4608(82)90022-X.
Sumner AT. 2001. Heterochromatin. Pp. 926-927, In: Brenner S, Miller JH (Eds.), Encyclopedia of Genetics. Academic Press, Elsevier Science Inc., Cambridge.
Svartman M, Vianna-Morgante AM. 1998. Karyotypic evolution of marsupials: From higher to lower diploid numbers. Cytogenetic and Genome Research 82(3-4): 263-6. DOI: https://doi.org/10.1159/000015114.
Tucker PK, Bickham JW. 1986. Sex chromosome-autosome translocations in the Ieaf-nosed bats, family Phyllostomidae. Cytogenetics and Cell Genetics 43: 28-37. DOI: https://doi.org/10.1159/000132294.
Tucker PK, Bickham JW. 1989. Heterochromatin and sex-chromosome variation in bats of the genus Carollia (Chiroptera: Phyllostomidae). Journal of Mammalogy 70(1): 174-9. DOI: https://doi.org/10.2307/1381683.
Wilson AC, Bush GL, Case SM King MC. 1975. Social structuring of mammalian populations and rate of chromosomal evolution. Proceedings of the National Academy of Sciences 72(12): 5061-5. DOI: https://doi.org/10.1073/pnas.72.12.5061.
Yonenaga-Yassuda Y. 2004. Contribuição da FISH à citogenética de mamíferos e répteis. Pp. 89-114, In: Guerra M (Ed.), FISH Conceitos e aplicações na citogenética. Sociedade Brasileira de Genética, Ribeirão Preto.
Zima J. 2000. Chromosomal evolution in small mammals (Insectivora, Chiroptera, Rodentia). Hystrix 11(2): 5-15. DOI: https://doi.org/10.4404/hystrix-11.2-4143.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Brazilian Journal of Mammalogy
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.