O progresso analítico em medidas de biodiversidade
um breve comentário
DOI:
https://doi.org/10.32673/bjm.vie92.95Palavras-chave:
Filogenia, Mamíferos, Neotrópicos, Riqueza de espécies, Traços funcionaisResumo
Desde o início da ecologia como uma ciência formal, os ecólogos têm se interessado intensamente em entender os padrões de diversidade e os mecanismos subjacentes que forjam a distribuição da diversidade no espaço e ao longo do tempo. Várias facetas da (bio)diversidade foram propostas para abordar os principais dilemas da ecologia, desde a simples diversidade taxonômica até a diversidade funcional e filogenética. No teatro de medidas da biodiversidade, as abordagens analíticas tiveram um progresso desenfreado nas últimas décadas, mas ainda estão ancoradas em conceitos clássicos de ecologia. Nesta breve síntese, pretendo fornecer insights sobre técnicas de medidas de biodiversidade aplicadas à ecologia e conservação, especialmente por mastozoólogos/as latino-americanos/as. Com foco na diversidade taxonômica, funcional e filogenética, esta síntese foi focada em descrever brevemente o status quo conceitual e analítico das medidas de biodiversidade em ecologia/conservação/mastozoologia. Para entender os padrões de diversidade — e prever os mecanismos subjacentes — deve ser fortalecida uma agenda de pesquisas e alianças entre cientistas e estudantes, o que certamente trará avanços para a mastozoologia latino-americana. Para tanto, a grande maioria das análises modernas (incluindo algumas aqui retratadas) depende de alta capacidade computacional, normalmente concentrada em regiões economicamente afluentes e que precisa urgentemente ser descentralizada por meio de parcerias institucionais.
Referências
Ackerly DD. 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences 164(3): 165-184. DOI: https://doi.org/10.1086/368401.
Baselga A, Orme CDL 2012. Betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution 3(5): 808-812. DOI: https://doi.org/10.1111/j.2041-210X.2012.00224.x.
Baselga A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134–143. DOI: https://doi.org/10.1111/j.1466-8238.2009.00490.x.
Betts MG, Fahrig L, Hadley AS, Halstead KE, Bowman J, Robinson WD, Wiens JA, Lindenmayer DB. 2014. A species-centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography 37(6): 517-527. DOI: https://doi.org/10.1111/ecog.00740.
Blondel J. 2003. Guilds or functional groups: does it matter? Oikos 100(2): 223-231. DOI: https://doi.org/10.1034/j.1600-0706.2003.12152.x.
Blonder B, Lamanna C, Violle C, Enquist BJ, McGill BJ. 2014. The n‐dimensional hypervolume. Global Ecology and Biogeography 23(6): 595-609. DOI: https://doi.org/10.1111/geb.12146.
Bogoni JA, Carvalho-Rocha V, Ferraz KMPMB, Peres CA. 2021. Interacting elevational and latitudinal gradients determine bat diversity and distribution across the Neotropics. Journal of Animal Ecology 90(12): 2729-2743. DOI: https://doi.org/10.1111/1365-2656.13594.
Bogoni JA, Ferraz KMPMB, Peres CA. 2022. Continental-scale local extinctions in mammal assemblages are synergistically induced by habitat loss and hunting pressure. Biological Conservation 272: 109635. DOI: https://doi.org/10.1016/j.biocon.2022.109635.
Bogoni JA, Graipel ME, Oliveira-Santos LGR, Cherem JJ, Giehl ELH, Peroni N. 2017. What would be the diversity patterns of medium- to large-bodied mammals if the fragmented Atlantic Forest was a large metacommunity? Biological Conservation 211(Part A): 85-94. DOI: https://doi.org/10.1016/j.biocon.2017.05.012.
Bogoni JA, Peres CA, Ferraz KMPMB. 2020a. Effects of mammal defaunation on natural ecosystem services and human well-being throughout the entire Neotropical realm. Ecosystem Services 45: 101173. DOI: https://doi.org/10.1016/j.ecoser.2020.101173.
Bogoni JA, Peres CA, Ferraz KMPMB. 2020b. Extent, intensity, and drivers of mammal defaunation: a continental-scale analysis across the Neotropics. Scientific Reports 10(1): 14750. DOI: https://doi.org/10.1038/s41598-020-72010-w.
Bogoni JA, Peres CA, Ferraz KMPMB. 2021. Medium-to large-bodied mammal surveys across the Neotropics are heavily biased against the most faunally intact assemblages. Mammal Review 51(3): 283-293. DOI: https://doi.org/10.1111/mam.12274.
Burgin CJ, Colella JP, Kahn PL, Upham NS. 2018. How many species of mammals are there? Journal of Mammalogy 99(1): 1-14. DOI: https://doi.org/10.1093/jmammal/gyx147.
Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, Orme CDL, Purvis A. 2005. Multiple causes of high extinction risk in large mammal species. Science 309(5738): 1239-1241. DOI: https://doi.org/10.1126/science.1116030.
Cardillo M, Purvis A, Sechrest W, Gittleman JL, Bielby J, Mace GM. 2004. Human population density and extinction risk in the world's carnivores. PLoS Biology 2(7): e197. DOI: https://doi.org/10.1371/journal.pbio.0020197.
Carmona CP, Pärtel M. 2022. DarkDiv: Estimating dark diversity and site-specific species pools. R package version 0.3.0. 2020. Available at: https://cran.r-project.org/web/packages/DarkDiv/DarkDiv.pdf.
Chao A, Chiu CH, Hsieh TC. 2012. Proposing a resolution to debates on diversity partitioning. Ecology 93(9): 2037–2051. DOI: https://doi.org/10.1890/11-1817.1.
Chao A, Chiu CH, Jost L. 2014. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics 45: 297-324. DOI: https://doi.org/10.1146/annurev-ecolsys-120213-091540.
Chiquito EA, Caccavo A, Santos CF, Semedo TBF, Costa-Pinto AL, Astúa D, Bezerra AMR, Silva CR et al. 2021. Coleções de mamíferos no Brasil: visão geral e banco de dados. Brazilian Journal of Mammalogy 90: e90202105. DOI: https://doi.org/10.32673/bjm.vie90.5
Cianciaruso MV, Silva IA, Batalha MA. 2009. Diversidades filogenética e funcional: novas abordagens para a Ecologia de comunidades. Biota Neotropica 9(3): 93-103. DOI: https://doi.org/10.1590/S1676-06032009000300008.
Colombo GT, Di Ponzio R, Benchimol M, Peres CA, Bobrowiec PED. 2022. Functional diversity and trait filtering of insectivorous bats on forest islands created by an Amazonian mega dam. Functional Ecology 37(1): 99-111. DOI: https://doi.org/10.1111/1365-2435.14118.
Dalapicolla J, Abreu EF, Prado JR, Chiquito EA, Roth PRO, Brennand PGO, Pavan ACD, Pereira A et al. 2021a. Areas of endemism of small mammals are underprotected in the Atlantic Forest. Journal of Mammalogy 102(5): 1390-1404. DOI: https://doi.org/10.1093/jmammal/gyab073.
Dalapicolla J, Prado JR, Percequillo AR, Knowles LL. 2021b. Functional connectivity in sympatric spiny rats reflects different dimensions of Amazonian forest‐association. Journal of Biogeography 48(12): 3196-3209. DOI: https://doi.org/10.1111/jbi.14281.
Davidson AD, Hamilton MJ, Boyer AG, Brown JH, Ceballos G. 2009. Multiple ecological pathways to extinction in mammals. Proceedings of the National Academy of Sciences 106(2): 10702-10705. DOI: https://doi.org/10.1073/pnas.0901956106.
Debastiani VJ, Pillar VD. 2012. SYNCSA: a program for analysis of functional diversity and functional redundancy in ecological communities. Bioinformatics 28(15): 2067-2068. https://doi.org/10.1093/bioinformatics/bts325.
Diniz-Filho JAF, Cianciaruso MV, Rangel TF, Bini LM. 2011. Eigenvector estimation of phylogenetic and functional diversity. Functional Ecology 25(4): 735-744. DOI: https://doi.org/10.1111/j.1365-2435.2011.01836.x.
Dobson AP, Oli MK. 2007. Fast and slow life histories of mammals. Ecoscience 14(3): 292-299. DOI: https://www.jstor.org/stable/42902037.
Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guénard G, Jombart T, Larocque G, et al. 2023. Adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-21. Available at: https://CRAN.R-project.org/package=adespatial.
Ellison AM. 2010. Partitioning diversity. Ecology 91(7): 1962-1963. DOI: https://doi.org/10.1890/09-1692.1.
Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61(1): 1-10. DOI: https://doi.org/10.1016/0006-3207(92)91201-3.
Faurby S, Davis M, Pedersen RO, Schowanek SD, Antonelli A, Svenning JC. 2019. PHYLACINE 1.2: The Phylogenetic Atlas of Mammal Macroecology. Ecology 99(11): 2626-2626. DOI: https://doi.org/10.1002/ecy.2443.
Faurby S, Svenning JC. 2015. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Molecular Phylogenetics and Evolution 84: 14-26. DOI: https://doi.org/10.1016/j.ympev.2014.11.001.
Fauth JE, Bernardo J, Camara M, Resetarits Jr WJ, Van Buskirk J. 1996. Simplifying the jargon of community ecology: a conceptual approach. The American Naturalist 147(2): 282-286. DOI: https://doi.org/10.1086/285850.
Ferraz KMPMB, Marchini S, Bogoni JA, Paolino RM, Landis M, Fusco-Costa R, Magioli M, Munhoes LP et al. 2021. Best of both worlds: Combining ecological and social research to inform conservation decisions in a Neotropical biodiversity hotspot. Journal for Nature Conservation 66: 126146. DOI: https://doi.org/10.1016/j.jnc.2022.126146.
Fisher RA, Corbet AS, Williams CB. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12(1): 42-58. DOI: https://doi.org/10.2307/1411.
Flynn JJ, Finarelli JA, Zehr S, Hsu J, Nedbal MA. 2011. Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Systematic Biology 54(2): 317–337. DOI: https://doi.org/10.1080/10635150590923326.
Gonçalves F, Bovendorp RS, Beca G, Bello C, Costa-Pereira R, Muylaert RL, Rodarte RR, Villar N et al. 2018. Atlantic mammal traits: a data set of morphological traits of mammals in the Atlantic Forest of South America. Ecology 99(2): 498. DOI: https://doi.org/10.1002/ecy.2106.
Hannibal W, Cunha NL. in review. Exploring patterns of taxonomic, functional, and phylogenetic β-diversity variation of Neotropical small mammals in a highly fragmented landscape. bioRxiv, 2022.08.09.503406. DOI: https://doi.org/10.1101/2022.08.09.503406.
Heino J, Girón JG, Hämäläinen H, Hellsten S, Ilmonen J, Karjalainen J, Mäkinen T, Nyholm K et al. 2022. Assessing the conservation priority of freshwater lake sites based on taxonomic, functional and environmental uniqueness. Diversity and Distribution 28(9): 1966-1978. DOI: https://doi.org/10.1111/ddi.13598.
Heino J, Grönroos M. 2017. Exploring species and site contributions to beta diversity in stream insect assemblages. Oecologia 183: 151-160. DOI: https://doi.org/10.1007/s00442-016-3754-7.
Hilborn R, Mangel M. 1997. The Ecological Detective. Confronting Models with Data. Princeton University Press.
Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM et al., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75(1): 3-35. DOI: https://doi.org/10.1890/04-0922.
Hortal J, Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ. 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review in Ecology, Evolution and Systematic. 46: 523–549. DOI: 10.1146/annurev-ecolsys-112414-054400.
Hsieh TC, Ma KH, Chao A. 2019. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7(12): 1451-1456. DOI: https://doi.org/10.1111/2041-210X.12613.
Huelsenbeck JP, Rannala B. 1997. Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276(5310): 227-232. DOI: https://doi.org/10.1126/science.276.5310.227.
Hui C, McGeoch MA. 2014. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. The American Naturalist 184(5): 684-694. DOI: https://doi.org/10.1086/678125.
Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, Safi K, Sechrest W et al. 2009. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90(9): 2648-2648. DOI: https://doi.org/10.1890/08-1494.1.
Jones KE, Bininda-Emonds OR, Gittleman JL. 2002. Bats, clocks, and rocks: diversification patterns in chiroptera. Evolution 56(12): 2318-2332. DOI: https://doi.org/10.1111/j.0014-3820.2002.tb00188.x
Jost L. 2006. Entropy and diversity. Oikos 113(2): 363-375. DOI: https://doi.org/10.1111/j.2006.0030-1299.14714.x
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26(11): 1463-1464. DOI: https://doi.org/10.1093/bioinformatics/btq166.
Krebs CJ. 1999. Ecological methodology. Benjamin-Cummings Pub Co, Menlo Park.
Lacher TE, Davidson A, Fleming TH, Gómez-Ruiz EP, McCracken GF, Owen-Smith N, Peres CA, Vander Wall SB. 2019. The functional roles of mammals in ecosystems. Journal of Mammalogy 100(3): 942-964. DOI: https://doi.org/10.1093/jmammal/gyy183.
Laliberté E, Legendre P, Shipley B. 2022. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version, 1(5). Available at: https://cran.r-project.org/web/packages/FD/FD.pdf.
Laliberté E, Legendre P. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1): 299-305. DOI: https://doi.org/10.1890/08-2244.1.
Latombe G, Hui C, McGeoch MA. 2017. Multi-site generalised dissimilarity modelling: using zeta diversity to differentiate drivers of turnover in rare and widespread species. Methods in Ecology and Evolution 8(8): 1048-1058. DOI: https://doi.org/10.1111/2041-210X.12756.
Latombe G, McGeoch M, Nipperess D, Hui C. 2022. zetadiv: Functions to Compute Compositional Turnover Using Zeta Diversity. R package version 1.2.1, https://CRAN.R-project.org/package=zetadiv.
Laureto LMO, Cianciaruso MV, Samia DSM. 2015. Functional Diversity: An overview of its history and applicability. Natureza & Conservação 13(2): 112-116. DOI: https://doi.org/10.1016/j.ncon.2015.11.001.
Legendre P, De Cáceres M. 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters 16(8): 951-963. DOI: https://doi.org/10.1111/ele.12141.
Luza AL, Graham CH, Hartz SM, Karger DN. 2021. Functional redundancy of non-volant small mammals increases in human-modified habitats. Journal of Biogeography 48(12): 2967-2980. DOI: https://doi.org/10.1111/jbi.14264.
Maestri R, Luza AL, Barros LD, Hartz SM, Ferrari A, Freitas TRO, Duarte LDS. 2016. Geographical variation of body size in sigmodontine rodents depends on both environment and phylogenetic composition of communities. Journal of Biogeography 43(6): 1192-1202. DOI: https://doi.org/10.1111/jbi.12718.
Maestri R, Patterson BD. 2016. Patterns of species richness and turnover for the South American rodent fauna. PLoS ONE 11(3): e0151895. https://doi.org/10.1371/journal.pone.0151895.
Maestri R, Luza AL, Hartz SM, Freitas TRO, Patterson BD. 2022a. Bridging macroecology and macroevolution in the radiation of sigmodontine rodents. Evolution 76(8): 1790-1805. DOI: https://doi.org/10.1111/evo.14561.
Maestri R, Upham N, Patterson B. 2018. Tracing the diversification history of a Neogene rodent invasion into South America. Ecography 42(4): 683-695. DOI: https://doi.org/10.1111/ecog.04102.
Magioli M, Ferraz KMPMB, Chiarello AG, Galetti M, Setz EZF, Paglia AP, Abrego N, Ribeiro MC, Ovaskainen O. 2021. Land-use changes lead to functional loss of terrestrial mammals in a Neotropical rainforest. Perspectives in Ecology and Conservation 19(2): 161-170. DOI: https://doi.org/10.1016/j.pecon.2021.02.006.
Magioli M, Ferraz KMPMB, Setz EZF, Percequillo AR. Rondon MVSS, Kuhnen VV, Canhoto MCS, Santos KEA et al. 2016. Connectivity maintain mammal assemblages’ functional diversity within agricultural and fragmented landscapes. European Journal of Wildlife Research 62(4): 431–446. DOI: https://doi.org/10.1007/s10344-016-1017-x.
Magurran AE. 2004. Measuring biological diversity. Blackwell Publishing, Oxford, 256 p.
Mammola S, Cardoso P. 2020. Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods in Ecology and Evolution 11(8): 986-995. DOI: https://doi.org/10.1111/2041-210X.13424.
Marcon E, Hérault B. 2015. Entropart: An R package to measure and partition diversity. Journal of Statistical Software 67(8): 1-26. DOI: https://doi.org/10.18637/jss.v067.i08.
Marsh CJ, Sica YV, Burgin CJ, Dorman WA, Anderson RC, Mijares IdT, Vigneron JG, Barve V et al. 2022. Expert range maps of global mammal distributions harmonised to three taxonomic authorities. Journal of Biogeography 49(5): 979-992. DOI: https://doi.org/10.1111/jbi.14330.
Mellado B, Carneiro LO, Nogueira MR, Monteiro LR. 2018. Diversity and seasonality of a phyllostomid assemblage from the Atlantic Forest of Southeastern Brazil. Mastozoología Neotropical 25(2): 363-377.
Melo AS, Rangel TFLVB, Diniz-Filho JAF. 2009. Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography 32(2): 226-236. DOI: https://doi.org/10.1111/j.1600-0587.2008.05502.x
Melo AS. 2008. O que ganhamos 'confundindo' riqueza de espécies e equabilidade em um índice de diversidade? Biota Neotropica 8(3). DOI: https://doi.org/10.1590/S1676-06032008000300001.
Menezes FH, Feijó A, Fernandes HF, Costa YR, Cordeiro-Estrela P. 2021. Integrative systematics of Neotropical porcupines of Coendou prehensilis complex (Rodentia: Erethizontidae). Journal of Zoological Systematics and Evolutionary Research 59(8): 2410-2439. DOI: https://doi.org/10.1111/jzs.12529.
Meredith RW., Janecka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E et al. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification. Sciencexpress: 10.1126. DOI: https://doi.org/10.1126/science.1211028.
Mouillot D, Graham NAJ, Villeger S, Mason NWH, Bellwood DR. 2013. A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution 28(3): 167-177. DOI: https://doi.org/10.1016/j.tree.2012.10.004.
Naeem S. 1998. Species redundancy and ecosystem reliability. Conservation Biology 12(1): 39-45. DOI: https://doi.org/10.1111/j.1523-1739.1998.96379.x.
Nakamura G, Vicentin W, Súarez YR, Duarte L. 2020. A multifaceted approach to analyzing taxonomic, functional, and phylogenetic β diversity. Ecology 101(10): e03122. DOI: https://doi.org/10.1002/ecy.3122.
Norberg UM. 1981. Allometry of bat wings and legs and comparison with bird wings. Philosophical Transactions of the Royal Society B 292: 359-398. DOI: https://doi.org/10.1098/rstb.1981.0034.
Oliveira B, Machac A, Costa GC, Brooks TM, Davidson AD, Rondinini C, Graham CH. 2016. Species and functional diversity accumulate differently in mammals. Global Ecology and Biogeography 25(9): 1119-1130. DOI: https://doi.org/10.1111/geb.12471.
Oxford Dictionary of English. 2011. Oxford University Press, Oxford.
Paradis E, Schliep K. 2019. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35(3): 526-528. DOI: https://doi.org/10.1093/bioinformatics/bty633.
Pärtel M, Szava-Kovats R, Zobel M. 2011. Dark diversity: shedding light on absent species. Trends in Ecology & Evolution 26(3): 124-128. DOI: https://doi.org/10.1016/j.tree.2010.12.004
Pavoine S, Bonsall MB. 2011. Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews 86(4): 792-812. DOI: https://doi.org/10.1111/j.1469-185X.2010.00171.x.
Peet RK. 1974. The measurement of species diversity. Annual Review of Ecology, Evolution, and Systematics 5: 285-307. DOI: https://doi.org/10.1146/annurev.es.05.110174.001441
Penone C, Weinstein BG, Graham CH, Brooks TM, Rondinini C, Hedges SB, Davidson AD, Costa GC. 2016a. Global mammal beta diversity shows parallel assemblage structure in similar but isolated environments. Proceedings of the Royal Society B 283(1837): DOI: https://doi.org/10.1098/rspb.2016.1028.
Penone C, Weinstein BG, Graham CH, Brooks TM, Rondinini C, Hedges SB, Davidson AD, Costa GC. 2016b. Data from: Global mammal beta diversity shows parallel assemblage structure in similar but isolated environments. Dryad, Dataset. DOI: https://doi.org/10.5061/dryad.3kd7c.
Percequillo AR, Barbosa MFC, Bockmann FA, Bogoni JA, Esguícero ALH, Lamas C, Moraes GJ, Pinto-da-Rocha R, Silveira LF. 2022. Natural history museums and zoological collections of São Paulo State. Biota Neotropica 22(spe): e20221426. DOI: https://doi.org/10.1590/1676-0611-bn-2022-1426.
Percequillo AR, Prado JR, Abreu EF, Dalapicolla J, Pavan AC, Chiquito EA, Brennand P, Steppan SJ et al. 2021. Tempo and mode of evolution of oryzomyine rodents (Rodentia, Cricetidae, Sigmodontinae): A phylogenomic approach. Molecular Phylogenetics and Evolution 159: 107120. DOI: https://doi.org/10.1016/j.ympev.2021.107120
Pillar VD, Duarte LS. 2010. A framework for metacommunity analysis of phylogenetic structure. Ecology Letters 13(5): 587-596. DOI: https://doi.org/10.1111/j.1461-0248.2010.01456.x.
Prado JR, Knowles LL, Percequillo AR. 2021a. A new species of South American marsh rat (Holochilus, Cricetidae) from northeastern Brazil. Journal of Mammalogy 102(6): 1564–1582. DOI: https://doi.org/10.1093/jmammal/gyab104.
Prado JR, Knowles LL, Percequillo AR. 2021b. New species boundaries and the diversification history of marsh rat taxa clarify historical connections among ecologically and geographically distinct wetlands of South America. Molecular Phylogenetics and Evolution 155: 106992. DOI: https://doi.org/10.1016/j.ympev.2020.106992.
Prado JR, Rocha RG, Bissoli-Silva H, Mendes-Oliveira AC, Pontes RCL, Maués PCR, Pires LC. 2022. Small mammal diversity of a poorly known and threatened Amazon region, the Tapajós Area of Endemism. Biodiversity and Conservation 31: 2683-2697. DOI: https://doi.org/10.1007/s10531-022-02450-5.
Rabinowitz D. 1981. Seven forms of rarity. Pp. 205-217, In: Synge H, The Biological Aspects of Rare Plant Conservation. John Wiley & Sons, New Jersey.
Revell LJ. 2012. Phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3(2): 217-223. DOI: https://doi.org/10.1111/j.2041-210X.2011.00169.x.
Safi K, Cianciaruso MV, Loyola RD, Brito D, Armour-Marshall K, Diniz-Filho JA. 2011. Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical Transactions of the Royal Society B 366(1577): 2536-2544. DOI: https://doi.org/10.1098/rstb.2011.0024
Schweiger O, Biesmeijer JC, Bommarco R, Hickler T, Hulme PE, Klotz S, Kühn I, Moora M et al. 2010. Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews 85(4): 777-795. DOI: https://doi.org/10.1111/j.1469-185X.2010.00125.x.
Shannon CE, Weaver W. 1949. The Mathematical Theory of Communication. The University of Illinois Press, Illinois.
Silva PG, Bogoni JA, Heino J. 2020. Can taxonomic and functional metrics explain variation in the ecological uniqueness of ecologically associated animal groups in a modified rainforest? Science of the Total Environment 708: 135171. DOI: https://doi.org/10.1016/j.scitotenv.2019.135171.
Stauffer RC. 1957. Haeckel, Darwin, and ecology. Quarterly Review of Biology 32: 138-144.
The PLOS ONE Staff. 2015. Correction (Fergnani PN, Ruggiero A. 2015): Ecological diversity in South American mammals: Their geographical distribution shows variable associations with phylogenetic diversity and does not follow the latitudinal richness gradient. PLOS ONE 10(7): e0134651. DOI: https://doi.org/10.1371/journal.pone.0134651
Thévenin C, Mouchet M, Robert A, Kerbiriou C, Sarrazin F. 2018. Reintroductions of birds and mammals involve evolutionarily distinct species at the regional scale. Proceedings of the National Academy of Sciences 115(13): 3404-3409. DOI: https://doi.org/10.1073/pnas.1714599115.
Tilman D. 2001. Functional diversity. Pp. 109-120, In: Levin, SA (Ed.) Encyclopedia of Biodiversity. Academic Press, San Diego.
Tsirogiannis C, Sandel B. 2016. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39(7): 709-714. DOI: https://doi.org/10.1111/ecog.01814.
Upham NS, Esselstyn JA, Jetz W. 2019. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biology 17(12): e3000494. DOI: https://doi.org/10.1371/journal.pbio.3000494.
Vane-Wright RI, Humphries CJ, Williams PH. 1991. What to protect? Systematics and the agony of choice. Biological Conservation 55(3): 235-254. DOI: https://doi.org/10.1016/0006-3207(91)90030-D.
Varzinczak LH, Zanatta TB, Moura MO, Passos FC. 2019. Geographical patterns and current and short-term historical correlates of phylogenetic diversity and endemism for New World primates. Journal of Biogeography 47(4): 890-902. DOI: https://doi.org/10.1111/jbi.13767.
Villalobos F, Ranger TF, Diniz-Filho JAF. 2013. Phylogenetic fields of species: cross-species patterns of phylogenetic structure and geographical coexistence. Proceedings of the Royal Society B 280: 20122570. DOI: https://doi.org/10.1098/rspb.2012.2570.
Villéger S, Mason NW, Mouillot D. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89(8): 2290-2301. DOI: https://doi.org/10.1890/07-1206.1.
Warwick RM, Clarke KR. 1998. Taxonomic distinctness and environmental assessment. Journal of Applied Ecology 35(4): 532-543. DOI: https://doi.org/10.1046/j.1365-2664.1998.3540532.x
Whittaker RH. 1960. Vegetation of the Siskiyou Mountains, Oregon, and California. Ecological Monographs 30(3): 279-338. DOI: https://doi.org/10.2307/1943563.
Whittaker RH. 1972. Evolution, and measurement of species diversity. Taxon 21: 213-251. DOI: https://doi.org/10.2307/1218190.
Wilman H, Belmaker J, Simpson J, De la Rosa C, Rivadeneira MM, Jetz W. 2014. EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals. Ecology 95(7): 2027. DOI: https://doi.org/10.1890/13-1917.1.
Wilson EO. 1988. The current state of biological diversity. Pp. 3-18, In: Wilson EO, Peter FM (Eds.), Biodiversity. National Academy Press, Washington, D.C.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Brazilian Journal of Mammalogy
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.